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Abstract

In this paper, I will give a brief introduction to the results of large gaps between

primes. I will manily introduce the result in [1], there exists a constant c > 0 and infinite

n such that

pn+1 − pn ≥ c(log pn)(log log pn)(log log log pn)
−2,

where pn denotes the n−th prime. Then I will introduce some further results.
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1 Introduction

The small gap between two consecutive primes is an well-known and interesting open

problem, for instance, the twin prime conjecture. And the known best result about the

small gap between primes is

lim inf
n→∞

(pn+1 − pn) ≤ 246.

Hence a natural question is, how large can two consecutive primes have?

A easy and well-known result is

Theorem 1.1. For any M > 0, there is n ∈ N such that pn+1 − pn ≥ M .

Proof. Let m = [M ] + 2, here [x] denotes the largest integer that is smaller than x. Note

that for any 2 ≤ k ≤ m, we have m! + k is divided by k, hence m! + 2, · · · ,m! +m are

all composite numbers. Then there exists nm = π(m! + 2) such that

pnm+1 − pnm
≥ m ≥ M, (1.1)

where π(x) denotes the number of primes that less than x.

From theorem 1.1, we know that

lim sup
n→∞

(pn+1 − pn) = ∞. (1.2)

Then a natural question is that, how can we sharpen the estimation above? From

Bertrand theorem, we know that

1

2
(m! + 2) ≤ pnm

≤ m! + 2,

hence we take logarithm at the same time, then

log(m! + 2)− log 2 ≤ log pnm
≤ log(m! + 2).

2



Then from Stirling formula, we have

log pnm
= log(m!) + O(1)

= m logm−m+O(logm),

log log pnm
= logm+O(log logm).

Then we subsititute m by pnm
in (1.1), we have

pnm+1 − pnm
> [1 + o(1)]

log pnm

log log pnm

.

In other words, we have

Theorem 1.2. For any ε > 0, there are infinite many n ∈ N such that

pn+1 − pn > (1− ε)
log pn

log log pn
.

Actually, from the prime theorem, we can deduce a stronger result. Note that for

each X > 0, there are π(X) primes in the interval [1, X]. Hence there will must exist

two primes pn, pn+1 such that pn+1 − pn ≥ X

π(X)
= [1 + o(1)] logX ≥ [1 + o(1)] log pn.

Thus we have

Theorem 1.3. For any ε > 0, there are infinite many n ∈ N such that

pn+1 − pn > (1− ε) log pn.

Brauer and Zeitz [2] showed that 1 − ε in theorem 1.3 could be replaced by 4 − ε.

Westzynthius [3] proved that there are infinite n such that

pn+1 − pn ≥ 2 log pn log log log pn
log log log log pn

,

and Ricci [4] then proved that this can be improved to

pn+1 − pn > c log pn log log log pn

for a certain constant c. Then Erdös showed that it can be further improved, which is
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Theorem 1.4. There exist a certain positive constant c1 and infinite many n ∈ N such

that

pn+1 − pn ≥ c1 log pn log log pn

(log log log pn)
2 . (1.3)

In the next section, I will show Erdös’ proof of theorem 1.4.

2 Erdös’ Proof of Theorem 1.4

We reduce our problem to the proof of the following theorem.

Theorem 2.1. For a certain positive constant c2, we can find c2pn log pn/(log log pn)
2

consecutive integers so that no one of them is relatively prime to the product p1p2 · · · pn,

i.e. each of these integers is divisible by at least one of the primes p1, p2, · · · , pn.

The existence of such consecutive integers is from Chinese reminder theorem. But

before we use Chinese reminder theorem, we need some lemmas to find appropriate

congruence equations.

2.1 Some technical lemmas

Lemma 2.2. For large T we have

1.
∫ T

1

ey

y
dy =

eT

T
+O

(
eT

T 2

)
;

2.
∫ 1

1/T

ey

y
dy = log T +O (1);

3.
∫ T

1

ey

y2
dy =

eT

T 2
+O

(
eT

T 3

)
;

4.
∫ 1

1/T

ey

y2
dy = T + log T +O (1).

These four results all follow from integration by parts.
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Lemma 2.3. If N(eu) is the number of positive integers not excedding eu which contain

no prime factor greater than

exp

(
u log log u

a log u

)
,

where a > 0, then

N(eu) <
eu

ua−1−c2
(2.1)

for any fixed c2 > 0 and u large.

Proof. Put x = exp(u log log u/(a log u)) and take a number η > 0. Let k = π(x), then

N(eu) =
⊕
v≤eu

1 <
⊕
v≤eu

(
eu

v

)η

= euη
⊕
v≤eu

1

vη
< euη

∞⊕
v=1

1

vη
,

here we use
⊕

denotes the summation over those positive integers v which have no prime

factor exceeding x. Therfore, since
∞⊕
v=1

1

vη
=

k∏
l=1

(1− p−η
l )−1, (2.2)

we have

N(eu) < euη
k∏

l=1

(1− p−η
l )−1. (2.3)

Put

f(η) =
k∏

l=1

(1− p−η
l )−1 = exp

(
−

k∑
l=1

log(1− p−η
l )

)
. (2.4)

Then we have

log f(η) = −
k∑

l=1

log(1− p−η
l )

= −
x∑

t=1

log(1− t−η)(π(t)− π(t− 1))

= −π(x) log(1− x−η) + η

∫ x

2

π(t)

t(tη − 1)
dt

= O

(
x1−η

log x

)
+ η

∫ x

2

dt

(tη − 1) log t
+O

(
η

∫ x

2

dt

tη log2 t

)
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if η > 1/2 (for example), since

π(t) =
t

log t
+O

(
t

log2 t

)
.

Now take 1− η = δ = a log u/u < 1/2. Hence

log f(η) =

∫ x

2

dt

tη log t
+O(1) + O

(∫ x

2

dt

tη log2 t

)
=

∫ δ log x

δ log 2

ey

y
dy +O(1) + O

(
δ

∫ δ log x

δ log 2

ey

y2
dy

)
=

xδ

δ log x
+ log

1

δ
+O

(
xδ

δ2 log2 x

)
by lemma 2.2.

Therefore

log f(η) = log u+O

(
log u

log log u

)
. (2.5)

Thus

N(eu) < euηf(η)

= exp (u− δu+ log f(η))

= exp

(
u− (a− 1) log u+O

(
log u

log log u

))
<

eu

ua−1−c2
,

which is the required result.

Putting eu = pn log pn and a = 5 in (2.1), we have

N(pn log pn) = o

(
pn

(log pn)2

)
. (2.6)

More precisely, (2.6) shows the lemma below,

Lemma 2.4. If N0 is the number of those integers not excedding pn log pn, each of whose

greatest prime factor is less than p
1/(20 log log pn)
n , then N0 = o

(
pn/(log pn)

2
)
.
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From [2], we have the lemma below,

Lemma 2.5. Let m be any positive integer greater than 1, x and y any numbers such

that 1 ≤ x < y < m, and N the number of primes p less than or equal to m such that

p+ 1 is not divisible by any of the primes P , where x ≤ P ≤ y. Then

N <
c3m log x

logm log y
, (2.7)

where c3 is a constant independent of m,x and y.

We omit the proof here since it is too technical and not very helpful to the proof of

our main theorem. What we need is putting

m =
c4pn log pn
(log log pn)2

, x = log pn, y = p1/(20 log log pn)n .

Then we have the lemma below,

Lemma 2.6. We can find a constant c4 so that the number of primes p, less than

c4pn/(log log pn)
2 and such that p + 1 is not divisible by any prime between log pn and

p
1/(20 log log pn)
n , is less than pn/4 log pn.

We now returen to theorem 2.1. We denote q, r, s, t the primes satisfying the inequal-

ities

1 < q ≤ log pn, log pn < r ≤ p1/(20 log log pn)n

p1/(20 log log pn)n < s ≤ 1

2
pn,

1

2
pn < t ≤ pn.

We denote by a1, a2, · · · , ak the two sets of integers not greater than pn log pn, namely

1. the prime numbers lying between 1
2pn and c4pn log pn/(log log pn)

2 and not congruent

to −1 to any modulus r,

2. the integers not excedding pn log pn whose prime factors are included only among the

r.
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Some of the a’s may be t’s. Then we have the final lemma below,

Lemma 2.7. The number of the t’s is greater than k the number of the a’s, if pn is large

enough.

Proof. From lemma 2.4 and 2.6, we have

k <
1

4

pn
log pn

+ o

(
pn

(log pn)2

)
. (2.8)

The number of the t’s is greater than 1
3pn/ log pn for large pn, as is evident from the prime

number theorem. This proves the lemma.

2.2 Main proof

Now we begin the proof of theorem 2.1. We determine an integer z such that for all

q, r, s,

0 < z < p1p2 · · · pn,

and it satisfies the equation below

z ≡ 0 (mod q), z ≡ 1 (mod r), z ≡ 0 (mod s),

z + ai ≡ 0 (mod ti) i = 1, 2, · · · , k.

By lemma 2.7, the last congruence is always possible, for, as there are more t’s than a’s,

a case such as z + a1 ≡ 0 (mod t), z + a2 ≡ 0 (mod t) cannot occur.

We now show that, if l is any integer such that

0 < l < c2pn log pn/(log log pn)
2, (2.9)

then no one of the integers

z, z + 1, z + 2, · · · , z + l

is relatively prime to p1p2 · · · pn.

Now any integer b(0 < b < l) can be replaced in one at least of the following classes:
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(i) b ≡ 0 (mod q), for some q;

(ii) b ≡ 1 (mod r), for some r;

(iii) b ≡ 0 (mod s), for some s;

(iv) b is an ai.

For b cannot be divisible by an r and by a prime greater than 1
2pn, since if this were

so we should have

b >
1

2
pnr >

1

2
pn log pn > l,

for sufficiently large n. Hence, if b does not satisfy (i) or (iii), b is either a product of

primes r only, and so satisfies (iv), or b is not divisible by any q, r, s. In the latter case,

b must be a prime, for otherwise

b >

(
1

2
pn

)2

> l,

for sufficiently large n. Since, then, b is a prime between

1

2
pn and c2pn log pn

(log log pn)2
,

b is either an ai, or b satisfies (ii).

It is now clear that z + b is not relatively prime to p1p2 · · · pn, if

b <
c2pn log pn
(log log pn)2

.

Hence also, if p1, p2, · · · , pn are the primes not excedding x, say, z + b is not relatively

prime to p1p2 · · · pn, if b < c5x log x/(log log x)
2, where c3 is an appropriate constant

independent of x. This is clear from the first case on noticing that, by Bertrand’s theorem,

pn ≥ 1
2x.
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We return to the main problem. Take x = 1
2pn. Then the product pf the primes not

excedding x is less than 1
2pn for large pn by the prime number theorem. By theorem 2.1,

since now b < 1
2pn, we can find K consecutive integers less than pn, where

K =
c5 log pn log log pn
(log log log pn)2

,

each of which is divisible by a prime less than 1
2 log pn. Hence there are at least K −

1
2 log pn > 1

2K consecutive integers which are not primes.

Thus we have proved that at least one of the intervals between successive primes less

than pn is always of length not less than

c
log pn log log pn
(log log log pn)2

for large pn and an appropriate constant c. Since this expression is an increasing function

n, it follows immediately that for infinity of n,

pn+1 − pn ≥ c log pn log log pn

(log log log pn)
2 .

Hence we finish the proof of theorem 1.4.

3 Further results

After Erdös, Rakin [5] succeeded in showing that there are infinite many n such that

pn+1 − pn ≥ (c+ o(1))
log pn log log pn log log log log pn

(log log log pn)2
, (3.1)

with the constant c = 1/3. Since this result, however, the only improvements have been

in the constant c. And finally, Pintz [6] find a better constant c = 2eγ in 1997, where γ

denotes the Euler constant.

Erdös conjectured that 3.1 holds for arbitrary c > 0, and he would like to offer $5000

for this conjecture. But this conjecture is not been proved until 2014, by the joint work of
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K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao [7] , they succeeded in showing

that

Theorem 3.1 (K. Ford, B. Green, S. Konyagin, J. Maynard ,T. Tao). We have

lim sup
n→∞

pn+1 − pn
(log pn)(log2 pn)(log4 pn)(log3 pn)

−2
= ∞,

wehere logv denotes the v−fold logarithm.

Actually, Erdös had also conjectured a stronger result, for arbitrary small ε > 0, there

exists infinite many n such that

pn+1 − pn ≥ (log pn)
1+ε,

and he would like to offer $10000 for the proof of this conjecture. But no known result

about this harder conjecture.
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