LARGE GAPS BETWEEN PRIMES

2021 Chern Class 2113696 KAI ZHU

Abstract

In this paper, I will give a brief introduction to the results of large gaps between primes. I will manily introduce the result in [1], there exists a constant c > 0 and infinite n such that

 $p_{n+1} - p_n \ge c(\log p_n)(\log \log p_n)(\log \log \log p_n)^{-2},$

where p_n denotes the *n*-th prime. Then I will introduce some further results.

Contents

1	Introduction	2
2	Erdös' Proof of Theorem 1.4	4
	2.1 Some technical lemmas	4
	2.2 Main proof	8
3	Further results	10
Re	eferences	11

1 Introduction

The small gap between two consecutive primes is an well-known and interesting open problem, for instance, the twin prime conjecture. And the known best result about the small gap between primes is

$$\liminf_{n \to \infty} (p_{n+1} - p_n) \le 246.$$

Hence a natural question is, how large can two consecutive primes have?

A easy and well-known result is

Theorem 1.1. For any M > 0, there is $n \in \mathbb{N}$ such that $p_{n+1} - p_n \ge M$.

Proof. Let m = [M] + 2, here [x] denotes the largest integer that is smaller than x. Note that for any $2 \le k \le m$, we have m! + k is divided by k, hence $m! + 2, \dots, m! + m$ are all composite numbers. Then there exists $n_m = \pi(m! + 2)$ such that

$$p_{n_m+1} - p_{n_m} \ge m \ge M,\tag{1.1}$$

where $\pi(x)$ denotes the number of primes that less than x.

From theorem 1.1, we know that

$$\limsup_{n \to \infty} (p_{n+1} - p_n) = \infty.$$
(1.2)

Then a natural question is that, how can we sharpen the estimation above? From Bertrand theorem, we know that

$$\frac{1}{2}(m!+2) \le p_{n_m} \le m!+2,$$

hence we take logarithm at the same time, then

$$\log(m! + 2) - \log 2 \le \log p_{n_m} \le \log(m! + 2).$$

Then from Stirling formula, we have

$$\log p_{n_m} = \log(m!) + O(1)$$
$$= m \log m - m + O(\log m),$$
$$\log \log p_{n_m} = \log m + O(\log \log m).$$

Then we substitute m by p_{n_m} in (1.1), we have

$$p_{n_m+1} - p_{n_m} > [1 + o(1)] \frac{\log p_{n_m}}{\log \log p_{n_m}}.$$

In other words, we have

Theorem 1.2. For any $\varepsilon > 0$, there are infinite many $n \in \mathbb{N}$ such that

$$p_{n+1} - p_n > (1 - \varepsilon) \frac{\log p_n}{\log \log p_n}.$$

Actually, from the prime theorem, we can deduce a stronger result. Note that for each X > 0, there are $\pi(X)$ primes in the interval [1, X]. Hence there will must exist two primes p_n, p_{n+1} such that $p_{n+1} - p_n \ge \frac{X}{\pi(X)} = [1 + o(1)] \log X \ge [1 + o(1)] \log p_n$. Thus we have

Theorem 1.3. For any $\varepsilon > 0$, there are infinite many $n \in \mathbb{N}$ such that

$$p_{n+1} - p_n > (1 - \varepsilon) \log p_n.$$

Brauer and Zeitz [2] showed that $1 - \varepsilon$ in theorem 1.3 could be replaced by $4 - \varepsilon$. Westzynthius [3] proved that there are infinite *n* such that

$$p_{n+1} - p_n \ge \frac{2\log p_n \log \log \log p_n}{\log \log \log \log p_n},$$

and Ricci [4] then proved that this can be improved to

$$p_{n+1} - p_n > c \log p_n \log \log \log p_n$$

for a certain constant c. Then Erdös showed that it can be further improved, which is

Theorem 1.4. There exist a certain positive constant c_1 and infinite many $n \in \mathbb{N}$ such that

$$p_{n+1} - p_n \ge \frac{c_1 \log p_n \log \log p_n}{\left(\log \log \log p_n\right)^2}.$$
(1.3)

In the next section, I will show Erdös' proof of theorem 1.4.

2 Erdös' Proof of Theorem 1.4

We reduce our problem to the proof of the following theorem.

Theorem 2.1. For a certain positive constant c_2 , we can find $c_2p_n \log p_n/(\log \log p_n)^2$ consecutive integers so that no one of them is relatively prime to the product $p_1p_2 \cdots p_n$, *i.e.* each of these integers is divisible by at least one of the primes p_1, p_2, \cdots, p_n .

The existence of such consecutive integers is from Chinese reminder theorem. But before we use Chinese reminder theorem, we need some lemmas to find appropriate congruence equations.

2.1 Some technical lemmas

Lemma 2.2. For large T we have

1.
$$\int_{1}^{T} \frac{e^{y}}{y} dy = \frac{e^{T}}{T} + O\left(\frac{e^{T}}{T^{2}}\right);$$

2.
$$\int_{1/T}^{1} \frac{e^{y}}{y} dy = \log T + O(1);$$

3.
$$\int_{1}^{T} \frac{e^{y}}{y^{2}} dy = \frac{e^{T}}{T^{2}} + O\left(\frac{e^{T}}{T^{3}}\right);$$

4.
$$\int_{1/T}^{1} \frac{e^{y}}{y^{2}} dy = T + \log T + O(1).$$

These four results all follow from integration by parts.

Lemma 2.3. If $N(e^u)$ is the number of positive integers not exceeding e^u which contain no prime factor greater than

$$\exp\left(\frac{u\log\log u}{a\log u}\right),\,$$

where a > 0, then

$$N(\mathbf{e}^u) < \frac{\mathbf{e}^u}{u^{a-1-c_2}} \tag{2.1}$$

for any fixed $c_2 > 0$ and u large.

Proof. Put $x = \exp(u \log \log u / (a \log u))$ and take a number $\eta > 0$. Let $k = \pi(x)$, then

$$N(\mathbf{e}^{u}) = \bigoplus_{v \le \mathbf{e}^{u}} 1 < \bigoplus_{v \le \mathbf{e}^{u}} \left(\frac{\mathbf{e}^{u}}{v}\right)^{\eta} = \mathbf{e}^{u\eta} \bigoplus_{v \le \mathbf{e}^{u}} \frac{1}{v^{\eta}} < \mathbf{e}^{u\eta} \bigoplus_{v=1}^{\infty} \frac{1}{v^{\eta}},$$

here we use \bigoplus denotes the summation over those positive integers v which have no prime factor exceeding x. Therfore, since

$$\bigoplus_{\nu=1}^{\infty} \frac{1}{\nu^{\eta}} = \prod_{l=1}^{k} (1 - p_l^{-\eta})^{-1}, \qquad (2.2)$$

we have

$$N(e^{u}) < e^{u\eta} \prod_{l=1}^{k} (1 - p_l^{-\eta})^{-1}.$$
 (2.3)

Put

$$f(\eta) = \prod_{l=1}^{k} (1 - p_l^{-\eta})^{-1} = \exp\left(-\sum_{l=1}^{k} \log(1 - p_l^{-\eta})\right).$$
(2.4)

Then we have

$$\log f(\eta) = -\sum_{l=1}^{k} \log(1 - p_l^{-\eta})$$

= $-\sum_{t=1}^{x} \log(1 - t^{-\eta})(\pi(t) - \pi(t - 1))$
= $-\pi(x) \log(1 - x^{-\eta}) + \eta \int_2^x \frac{\pi(t)}{t(t^{\eta} - 1)} dt$
= $O\left(\frac{x^{1-\eta}}{\log x}\right) + \eta \int_2^x \frac{dt}{(t^{\eta} - 1)\log t} + O\left(\eta \int_2^x \frac{dt}{t^{\eta}\log^2 t}\right)$

if $\eta > 1/2$ (for example), since

$$\pi(t) = \frac{t}{\log t} + O\left(\frac{t}{\log^2 t}\right).$$

Now take $1 - \eta = \delta = a \log u/u < 1/2$. Hence

$$\log f(\eta) = \int_{2}^{x} \frac{\mathrm{d}t}{t^{\eta} \log t} + O(1) + O\left(\int_{2}^{x} \frac{\mathrm{d}t}{t^{\eta} \log^{2} t}\right)$$
$$= \int_{\delta \log 2}^{\delta \log x} \frac{\mathrm{e}^{y}}{y} \mathrm{d}y + O(1) + O\left(\delta \int_{\delta \log 2}^{\delta \log x} \frac{\mathrm{e}^{y}}{y^{2}} \mathrm{d}y\right)$$
$$= \frac{x^{\delta}}{\delta \log x} + \log \frac{1}{\delta} + O\left(\frac{x^{\delta}}{\delta^{2} \log^{2} x}\right)$$

by lemma 2.2.

Therefore

$$\log f(\eta) = \log u + O\left(\frac{\log u}{\log \log u}\right).$$
(2.5)

Thus

$$N(e^{u}) < e^{u\eta} f(\eta)$$

= $\exp(u - \delta u + \log f(\eta))$
= $\exp\left(u - (a - 1)\log u + O\left(\frac{\log u}{\log\log u}\right)\right)$
< $\frac{e^{u}}{u^{a-1-c_2}},$

which is the required result.

Putting $e^u = p_n \log p_n$ and a = 5 in (2.1), we have

$$N(p_n \log p_n) = o\left(\frac{p_n}{(\log p_n)^2}\right).$$
(2.6)

More precisely, (2.6) shows the lemma below,

Lemma 2.4. If N_0 is the number of those integers not exceeding $p_n \log p_n$, each of whose greatest prime factor is less than $p_n^{1/(20 \log \log p_n)}$, then $N_0 = o(p_n/(\log p_n)^2)$.

From [2], we have the lemma below,

Lemma 2.5. Let m be any positive integer greater than 1, x and y any numbers such that $1 \le x < y < m$, and N the number of primes p less than or equal to m such that p+1 is not divisible by any of the primes P, where $x \le P \le y$. Then

$$N < \frac{c_3 m \log x}{\log m \log y},\tag{2.7}$$

where c_3 is a constant independent of m, x and y.

We omit the proof here since it is too technical and not very helpful to the proof of our main theorem. What we need is putting

$$m = \frac{c_4 p_n \log p_n}{(\log \log p_n)^2}, \quad x = \log p_n, \quad y = p_n^{1/(20 \log \log p_n)}$$

Then we have the lemma below,

Lemma 2.6. We can find a constant c_4 so that the number of primes p, less than $c_4p_n/(\log \log p_n)^2$ and such that p+1 is not divisible by any prime between $\log p_n$ and $p_n^{1/(20 \log \log p_n)}$, is less than $p_n/4 \log p_n$.

We now return to theorem 2.1. We denote q, r, s, t the primes satisfying the inequalities

$$1 < q \le \log p_n, \quad \log p_n < r \le p_n^{1/(20 \log \log p_n)}$$
$$p_n^{1/(20 \log \log p_n)} < s \le \frac{1}{2}p_n, \quad \frac{1}{2}p_n < t \le p_n.$$

We denote by a_1, a_2, \dots, a_k the two sets of integers not greater than $p_n \log p_n$, namely

- 1. the prime numbers lying between $\frac{1}{2}p_n$ and $c_4p_n \log p_n/(\log \log p_n)^2$ and not congruent to -1 to any modulus r,
- 2. the integers not exceeding $p_n \log p_n$ whose prime factors are included only among the r.

Some of the a's may be t's. Then we have the final lemma below,

Lemma 2.7. The number of the t's is greater than k the number of the a's, if p_n is large enough.

Proof. From lemma 2.4 and 2.6, we have

$$k < \frac{1}{4} \frac{p_n}{\log p_n} + o\left(\frac{p_n}{(\log p_n)^2}\right).$$
 (2.8)

The number of the t's is greater than $\frac{1}{3}p_n/\log p_n$ for large p_n , as is evident from the prime number theorem. This proves the lemma.

2.2 Main proof

Now we begin the proof of theorem 2.1. We determine an integer z such that for all q, r, s,

$$0 < z < p_1 p_2 \cdots p_n,$$

and it satisfies the equation below

$$z \equiv 0 \pmod{q}, \quad z \equiv 1 \pmod{r}, \quad z \equiv 0 \pmod{s},$$

 $z + a_i \equiv 0 \pmod{t_i} \quad i = 1, 2, \cdots, k.$

By lemma 2.7, the last congruence is always possible, for, as there are more t's than a's, a case such as $z + a_1 \equiv 0 \pmod{t}$, $z + a_2 \equiv 0 \pmod{t}$ cannot occur.

We now show that, if l is any integer such that

$$0 < l < c_2 p_n \log p_n / (\log \log p_n)^2, \tag{2.9}$$

then no one of the integers

$$z, z+1, z+2, \cdots, z+l$$

is relatively prime to $p_1 p_2 \cdots p_n$.

Now any integer b(0 < b < l) can be replaced in one at least of the following classes:

- (i) $b \equiv 0 \pmod{q}$, for some q;
- (ii) $b \equiv 1 \pmod{r}$, for some r;
- (iii) $b \equiv 0 \pmod{s}$, for some s;

(iv) b is an a_i .

For b cannot be divisible by an r and by a prime greater than $\frac{1}{2}p_n$, since if this were so we should have

$$b > \frac{1}{2}p_n r > \frac{1}{2}p_n \log p_n > l,$$

for sufficiently large n. Hence, if b does not satisfy (i) or (iii), b is either a product of primes r only, and so satisfies (iv), or b is not divisible by any q, r, s. In the latter case, b must be a prime, for otherwise

$$b > \left(\frac{1}{2}p_n\right)^2 > l,$$

for sufficiently large n. Since, then, b is a prime between

$$\frac{1}{2}p_n$$
 and $\frac{c_2p_n\log p_n}{(\log\log p_n)^2}$,

b is either an a_i , or b satisfies (ii).

It is now clear that z + b is not relatively prime to $p_1 p_2 \cdots p_n$, if

$$b < \frac{c_2 p_n \log p_n}{(\log \log p_n)^2}.$$

Hence also, if p_1, p_2, \dots, p_n are the primes not excedding x, say, z + b is not relatively prime to $p_1 p_2 \dots p_n$, if $b < c_5 x \log x / (\log \log x)^2$, where c_3 is an appropriate constant independent of x. This is clear from the first case on noticing that, by Bertrand's theorem, $p_n \ge \frac{1}{2}x$. We return to the main problem. Take $x = \frac{1}{2}p_n$. Then the product pf the primes not exceeding x is less than $\frac{1}{2}p_n$ for large p_n by the prime number theorem. By theorem 2.1, since now $b < \frac{1}{2}p_n$, we can find K consecutive integers less than p_n , where

$$K = \frac{c_5 \log p_n \log \log p_n}{(\log \log \log p_n)^2},$$

each of which is divisible by a prime less than $\frac{1}{2}\log p_n$. Hence there are at least $K - \frac{1}{2}\log p_n > \frac{1}{2}K$ consecutive integers which are not primes.

Thus we have proved that at least one of the intervals between successive primes less than p_n is always of length not less than

$$c\frac{\log p_n \log \log p_n}{(\log \log \log p_n)^2}$$

for large p_n and an appropriate constant c. Since this expression is an increasing function n, it follows immediately that for infinity of n,

$$p_{n+1} - p_n \ge \frac{c \log p_n \log \log p_n}{\left(\log \log \log p_n\right)^2}.$$

Hence we finish the proof of theorem 1.4.

3 Further results

After Erdös, Rakin [5] succeeded in showing that there are infinite many n such that

$$p_{n+1} - p_n \ge (c + o(1)) \frac{\log p_n \log \log p_n \log \log \log \log p_n}{(\log \log \log p_n)^2},$$
(3.1)

with the constant c = 1/3. Since this result, however, the only improvements have been in the constant c. And finally, Pintz [6] find a better constant $c = 2e^{\gamma}$ in 1997, where γ denotes the Euler constant.

Erdös conjectured that 3.1 holds for arbitrary c > 0, and he would like to offer \$5000 for this conjecture. But this conjecture is not been proved until 2014, by the joint work of

K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao [7], they succeeded in showing that

Theorem 3.1 (K. Ford, B. Green, S. Konyagin, J. Maynard , T. Tao). We have

$$\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{(\log p_n)(\log_2 p_n)(\log_4 p_n)(\log_3 p_n)^{-2}} = \infty$$

where \log_v denotes the v-fold logarithm.

Actually, Erdös had also conjectured a stronger result, for arbitrary small $\varepsilon > 0$, there exists infinite many n such that

$$p_{n+1} - p_n \ge (\log p_n)^{1+\varepsilon},$$

and he would like to offer \$10000 for the proof of this conjecture. But no known result about this harder conjecture.

References

- P. Erdos, "On the difference of consecutive primes," The Quarterly Journal of Mathematics, no. 1, pp. 124–128, 1935.
- [2] A. Brauer and H. Zeitz, "Über eine zahlentheoretische behauptung von legendre," Sber. Berliner Math. Ges, vol. 29, pp. 116–125, 1930.
- [3] E. J. Westzynthius, "Über die verteilung der zahlen: die zu den n ersten primzahlen teilerfremd sind..." Ph.D. dissertation, Helsingfors, 1931.
- [4] G. Ricci, "Ricerche aritmetiche sui polinomi, ii.(intorno a una proposizione non vera di legendre)," *Rendiconti del Circolo Matematico di Palermo (1884-1940)*, vol. 58, pp. 190–208, 1934.

- [5] R. A. Rankin, "The difference between consecutive prime numbers," Jornal of the London Mathematical Society, vol. 13, no. 4, pp. 242–247, 1938.
- [6] J. Pintz, "Very large gaps between consecutive primes," journal of number theory, vol. 63, no. 2, pp. 286–301, 1997.
- [7] J. Maynard, "Large gaps between primes," annals of Mathematics, pp. 915–933, 2016.