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Preliminaries
1

1.1 Notes

Theorem 1.1.1

We consider
n∑

k=1

Proof. Firstly ♣

1
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Riemannian Metrics
2

2.1 Notes

Proposition 2.1.1: Polarization Identity

Suppose 〈·, ·〉 is an inner product on a vector space V , then

〈v, w〉 = 1

4

(
|v + w|2 − |v − w|2

)
.

Proof. (Exercise 2.2) Using bilinearity and expand |v ± w|2. ♣

Definition 2.1.1: Riemannian Metrics

Let M be a smmoth manifold, a Riemannian metric onM is a smooth covariant 2-tensor field

g ∈ T 2(M) = Γ(T kT ∗M), whose value gp at each p ∈ M is an inner product on Tp(M), and

for all X,Y ∈ X(M), g(X,Y )(p) := gp(Xp, Yp) is a smooth function onM .

Proposition 2.1.2

Every smooth manifold admits a Riemannian metric.

Proof. (Exercise 2.5) Choose an atlas {ϕα|Uα → Vα ⊆ Rn}, and a
::::::::::
subordinate

::::::::
partition

::
of

::::::
unity

{ρα}, suppose gα is Euclidean inner product in Vα, then for each X,Y ∈ X(M), we can define

g(X,Y ) =
∑
α

ραgα((ϕα)∗X, (ϕα)∗Y ),

it is trivial to check the definition above is as desired. ♣

Definition 2.1.2: Isometry and Local Isometry

Suppose (M, g) and (M ′, g′) are Riemannian manidfols, an isometry from (M, g) to (M ′, g′) is

a
::::::::::::::
diffeomorphism ϕ :M →M ′ such that ϕ∗g′ = g.

A
::::
map ϕ : M → M ′ is a local isometry if each point p ∈ M has a neighborhood U such that

ϕ|U is an isometry onto an open subset ofM ′.

Remark. Equivalently, ϕ∗g′ = g denotes that the differential ϕ∗ at each p is a linear isometry from

Tp(M) to Tφ(p)(M), since g(X,Y ) = ϕ∗g′(X,Y ) = g′(ϕ∗X,ϕ∗Y ).

And note that if ϕ is a local isometry, we also have ϕ∗g′ = g , since it is a local result, so the main

difference between local isometry and
::::::::
isometry is ”map” and ”diffeomorphism”.

3



4 CHAPTER 2. RIEMANNIAN METRICS

Example 2.1.1 (The isometry of (Rn, g)). Let ϕ be an isometry on (Rn, g), then there exists A ∈ O(n)

such that ϕ(x) = Ax+ ϕ(0), i.e. we have Isom(Rn) = O(n)⋊Rn.

Proof. (Using Geodesic) Suppose ϕ : Rn → Rn is an isometry, and WLOG we assume ϕ(0) = 0, and

suppose ψ = ϕ ◦ (ϕ∗,0)
−1, note that ϕ∗,0 is the Jacobian of ϕ at 0, and thus ψ(0) = 0 and ψ∗,0 = Id.

Recall that the isometry sends geodesic to geodesic, then for geodesic {tv|t ∈ R} with velocity v,

then ψ(tv) is also a geodesic, since ψ(0) = 0 and ψ∗,0(v) = v, thus using the uniqueness of geodesic ,

we know that actually ψ(tv) = tv, then ψ = Id, thus ϕ is a linear constant map, furthermore, it is an

orthnogonal matrix. ♣

Remark. A more elementary proof can be found in Differential Geometry, Jiagui Peng.

Definition 2.1.3: Flat

A Riemannian n−manifold is said to be flat, if it is
::::::
locally

:::::::::
isometric to a Euclidean space, that

is, if every point has a neighborhhood that is isometric to an open set in Rn with its Euclidean

metric g.

Proposition 2.1.3

Suppose (M ′, g′) is a Riemannian manifold, and F is a smmoth map, then the smooth 2−tensor

field g = F ∗g′ is a Riemannian metric onM if and only if F is an immersion.

Proof. (Exercise 2.12) Recall that F is an immersion iff F∗ is injective, thus on the one hand, if g =

F ∗g′ is ametric then supposeF∗,pXp = 0, then since g(Xp, Xp) = F ∗g′(Xp, Xp) = g′(F∗,pXp, F∗,pXp) =

0, then Xp = 0 thus F∗ is injective then F is immersion.

On the other hand ,suppose F∗ is injective then g is naturally non-negative symmetry, the only thing

needs to check is g(X,X) = 0 iff X = 0, and injectivity provides that. ♣

Example 2.1.2 (Standard Metric on Sphere). The Riemannian metric induced on Sn by the Euclidean

metric of Rn+1 is denoted by ◦
g, we will give its precise expansion using local coordinate.

Metrics of Riemannian Submanifolds

Computationson a submanifold Mm ⊆ Rn are usually carried out most conveniently in terms of a

smooth local parametrization: there is a smooth map X : U → Rn, where U is an open subset of Rm

such that X(U) is an open subset ofM ⊆ Rn.

Then wen put V = X(U) ⊆M and ϕ = X−1 : V → U ⊆ Rm , then (V, ϕ) is a smooth coordinate

chart onM , then if g is the Riemannian metric onM , and ι :M ⊆ Rn, the coordinate representation of

g in (V, ϕ) is

(ϕ−1)∗g = X∗g = X∗(ι∗g) = (ι ◦X)∗g = X∗g,
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Thus once we have X : (u1, · · · , um) 7→ (X1, · · · , Xn), then we ca locally give the coorcinate repre-

sentation of X(U) inM :

g = X∗g =
m∑
i=1

(dXi)2 =
m∑
i=1

(
∂X i

∂uj
duj
)2

=
m∑
i=1

∂X i

∂uj
∂X i

∂uk
dujduk.

Example 2.1.3 (Metric of Sn). Consider the upper semisphere and X : Bn → Sn ⊆ Rn+1:

X(u1, · · · , un) =
(
u1, · · · , un,

√
1− (u1)2 − · · · − (un)2

)
,

we see that the round metric on Sn can be written locally as

◦
g = (du1)2 + · · ·+ (dun)2 +

(
d
√

1− (u1)2 − · · · − (un)2
)2

= (du1)2 + · · ·+ (dun)2 +

(
u1du1 + · · ·+ undun√
1− (u1)2 − · · · − (un)2

)2

=
(1− (ui)2)(dui)2 + 2uiujduiduj

1− (u1)2 − · · · − (un)2
.

Example 2.1.4 (Flat Tours). The n−tours Tn = S1 × · · · × S1, regarded as a subset of R2n by

(x1)2 + (x2)2 = · · · = (x2n−1)2 + (x2n)2 = 1,

and the smooth map X : Rn → Tn given by

X(u1, · · · , un) = (cosu1, sinu1, · · · , cosun, sinun)

induces a
:::
flat

::::::
metric on Tn, since

g = X∗g =
n∑

i=1

((− sinui)2 + (cosui)2)(dui)2 =
m∑
i=1

(dui)2.

Riemmanian Products and Warped Products

Definition 2.1.4

Suppose (M1, g1) and (M2, g2) are two Riemannian manifolds, and f : M1 → R+ is a strictly

positive smooth function. The warped product M1 ×f M2 is the product manifold M1 ×M2

endowed with the Riemannian metric g = g1 ⊕ f2g2, defined by

g(p1,p2)((v1, v2), (w1, w2)) := g1|p1(v1, w1) + f(p1)
2 · g2|p2(v2, w2).

Remark. This is an improtant concept in Metric Geometry. And some interesting examples about

warped product showed in the problems.

Example 2.1.5 (Fubini-Study metric). Note that there is a projection π : S2n+1 → CPn, and it is not

hard to show that this is a submersion, then there exists a unique metric g such that π is a Riemannian

submersion, i.e., ◦g(X,Y ) = g(π∗X,π∗, Y ).
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Basic Constructions on Riemannian Manifolds

We define a bundle homorphism ĝ : TM → T ∗M by setting

ĝ : X 7→ ĝ(X), ĝ(X)(Y ) = g(X,Y ).

Suppose {Ei} is a smooth local frame, and its dual coframe is (εi), let g = gijε
iεj , andX = XiEi,

then suppose ĝ(X) = aiε
i, then we have ai = ĝ(X)(Ei) = g(X,Ei) = gjiX

j , thus

ĝ(X) = (gijX
i)εi := Xiε

i, Xi = gijX
j .

So we say that ĝ(X) is obtained from X by lowering an index, since the coordinate turns from Xi to

Xi, and we denoted ĝ(X) by X♭ and called X flat.

Similarly, for a 1-form ω, one can define ω♯ := ĝ−1(ω), in short, we have

X♭(Y ) = g(X,Y ), g(ω♯, Y ) = ω(Y ).

For f : M → R be a smooth function, then gradf := (df)♯, since df = aiε
i, then ai = df(Ei) =

Eif , then df = (Eif)ε
i, and suppose gradf = aiEi, then from ajgij = g(gradf,Ei) = df(Ei) = Eif ,

thus aj = gij(Eif).

We can generalize this notation to any tensor, i.e, for

A = Ai
j
kε

i ⊗ Ej ⊗ εk,

then we have A♭ = Aijkε
i ⊗ εj ⊗ εk, where Aijk = gjlAi

l
k.

Now from the trace of (k + 1, l + 1) tensor

F = F
i1···ik+1

j1···jl+1
Ei1 ⊗ · · · ⊗ Eik+1

⊗ εj1 ⊗ · · · ⊗ εjl+1 ,

then we define its trace trF is a (k, l) tensor such that

(trF )i1···ikj1···jl = F i1···ikm
j1···jlm Ei1 ⊗ · · · ⊗ Eik ⊗ εj1 ⊗ · · · ⊗ εjl .

Now for any (0, k) tensor field h, and

h = hj1···jkε
j1 ⊗ · · · ⊗ εjk ,

we define the trace of h with respect to g as trgh = trh♯ is a (0, k − 2) tensor, where

h♯ = hj1···jk−1

jkεj1 ⊗ · · · ⊗ εjk−1 ⊗ Ejk ,

where from preceeding discussion, we have

hj1···jk−1

jk = gljkhj1···jk−1l,

thus we actually have

trgh = hj1···jk−2m
mεj1 ⊗ · · · ⊗ εjk−2 = glmhj1···jk−2mlε

j1 ⊗ · · · ⊗ εjk−2
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Inner Products of Tensors

Firstly, we define the inner product between 1-form:

〈ω, η〉 = 〈ω♯, η♯〉,

suppose ω = ωiε
i, then we have ω♯ = ωiEi = gijωjEi, then for η♯ = gijηjEi, so

〈ω, η〉 = 〈gijωiEj , g
klηkEl〉 = gijgklgjl · ωiηk = gikωiηk.

So it is really a natural generalization of inner prodcut of vectors, since

g(X,Y ) = gijX
iY j , g(ω, η) = gijωiηj .

Now we can define the inner products of arbitary (k, l) tensor, i.e., we define

〈α1 ⊗ · · · ⊗ αk+1, β1 ⊗ · · · ⊗ βk+l〉 := 〈α1, β1〉 · · · 〈αk+1, βk+l〉.

And for F = F i1···ik
j1···jl E ⊗ ε, G = Gs1···sk

t1···tl E ⊗ ε, we now have

〈F,G〉 = F i1···ik
j1···jl ·Gs1···sk

t1···tl · gi1s1 · · · gikskg
j1t1 · · · gjltl .

Some Basic Operators abou Differential Forms

If {ϕi} is any local oriented orthonormal coframe for T ∗M , then we define

dVg = ε1 ∧ · · · ∧ εn.

If (ηi) is another orthonormal basis, and ηi = aijε
j and aijakj = δik, i.e., (aij) is an orthonormal matrix,

then we have η1 ∧ · · · ∧ ηn = (a1i ε
i) ∧ · · · ∧ (ani ε

i) = dVg, so the volume form is not dependent on the

choice of orthonarmal basis.

Now more precisely, suppose εi = bikdxk, then suppose B = (bik), then since gij = 〈∂i, ∂j〉, then

we have g(dxi, dxj) = gij , then we have In = BBT (gij), thus, we have detB =
√
det(gij), so we use

the similar way to calculate, and have

dVg =
√
det(gij)dx1 ∧ · · · ∧ dxn.

Now we recall some basic operators,

1. (Exterior Differential) d :
∧∗(M) →

∧∗+1(M) and we have for ω ∈
∧k(M), then

dω(X0, · · · , Xk) =

k∑
i=0

(−1)iXi(ω(X0, · · · , X̂i, · · · , Xk))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0 · · · , X̂i, · · · , X̂j , · · · , Xk).
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2. (Interior Product) i(X) :
∧∗(M) →

∧∗−1(M) and then we have for ω ∈
∧k(M), then

i(X)ω(X1, · · · , Xk−1) = ω(X,X1, · · · , Xk−1).

3. (Lie Derivative) LX :
∧∗(M) →

∧∗(m) , then we have for ω ∈
∧k(M), then

LXω(X1, · · · , Xk) = X(ω(X1, · · · , Xk))−
k∑

i=1

ω(X1, · · · , [X,Xi], · · · , Xk).

4. (Hodge Star) ∗ :
∧k(M) →

∧n−k(M) , recall there always have

ω ∧ (∗ω) = dVg, ∀ω ∈ ∧k(M).

5. (Divergence) div : X(M) → R , and more precisely,

div(X) := ∗d ∗X♭,

we also define the divergence as

(divX) · dVg := d(i(X)dVg),

we will use the second definition in our latter discussion.

6. (Laplacian Operator) ∆ : C∞(M) → C∞(M), we have

∆(u) = div(gradu),

we can actually define ∆ = dδ + δd for differential forms, but we will not use it until we discuss

about Hodge theory.

Here are some relations about the operators above, we will select some of them to prove:

1. i(X)(ω ∧ η) = i(X)ω ∧ η + (−1)degωω ∧ i(X)η;

2. LX i(Y )− i(Y )LX = i([X,Y ]);

3. LX = i(X)d+ di(X);

4. LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη , one can view it as Leibniz rule;

5. LXd = dLX ;

6. LXLY − LY LX = L[X,Y ];
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Proposition 2.1.4

Let (M, g) be a smooth Riemmannian manifold, and (xi) ia s local coordinate, then we have

div(Xi∂i) =
1√
G

∂

∂xi

(
Xi

√
G
)

∆u =
1√
G

∂

∂xi

(
gij

√
G
∂u

∂xj

)
.

Proof. Suppose X = Xi∂i, then since d(i(X)dVg) = div(X)dVg, thus we have

divX ·
√
G = d(i(X)dVg)(∂1, · · · , ∂n).

Suppose i(X)dVg = aidx1 ∧ · · · d̂xi ∧ · · · ∧ dxn, then we have

ai = i(X)dVg(∂1, · · · , ∂̂i, · · · , ∂n)

= dVg(X, ∂1, · · · , ∂̂i, · · · , ∂n)

=
√
Gdx1 ∧ · · · ∧ dxn(Xi∂i, ∂1, · · · , ∂̂i, · · · , ∂n)

=
√
G · (−1)i−1dx1 ∧ · · · ∧ dxn(∂1, · · · , X i∂i, · · · , ∂n)

=
√
G ·Xi · (−1)i−1.

Thus it is trivial to see that we really have

div(Xi∂i) =
1√
G

∂

∂xi

(
Xi

√
G
)
.

Now for ∆u = div(gradu), and since gradu = (du)♯ = ui∂i =

(
gij

∂u

∂xj

)
∂i, since

du =
∂u

∂xj
dxj := ujdxj ,

Thus the formula follows from the divergence. ♣

Theorem 2.1.1

Suppose (M, g) is compact oriented manifold, then the folowing divergence theorem holds for

X ∈ X(M): ∫
M

divXdVg =

∫
∂M

〈X,N〉dVĝ,

where N is the outward unit normal to ∂M and ĝ is the induced metric on ∂M .

Proof. For any p on ∂M , we suppose N ∪ {Ei}ni=2 is an orthonormal basis of TpM , and {Ei}ni=2

is an orthonormal basis of Tp∂M , and the dual basis is ε1, ε2, · · · εn, then dVg = ε1 ∧ · · · ∧ εn, and

dVĝ = ε2 ∧ · · · ∧ εn and assume i(X)dVg = aiε
1 ∧ · · · ∧ ε̂i ∧ · · · ∧ εn , then we have

a1 = dVg(X,E2, · · · , En) = 〈X,N〉,
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suppose ι : ∂M ↪→M , then by Stokes furmula∫
M

divXdVg =

∫
M

d(i(X)dVg)

=

∫
∂M

ι∗(i(X)dVg)

=

∫
∂M

a1ε
2 ∧ · · · ∧ εn

=

∫
∂M

〈X,N〉dVĝ.

Finally ,we complete the proof, the main part is ι∗. ♣

Corollary 2.1.1: Integraton by Parts

The divergence operator satisfies the following product rule

div(uX) = udivX + 〈gradu,X〉, u ∈ C∞(M), X ∈ X(M),

then we have the following integration by parts formula∫
M
〈gradu,X〉dVg =

∫
∂M

u〈X,N〉dVĝ −
∫
M
udivXdVg.

Proof. We have

div(uX) =
1√
G

∂

∂xi
(uX i

√
G)

= u · 1√
G

∂

∂xi
(Xi

√
G) +Xi · ∂u

∂xi

= udivX +Xu = udivX + 〈gradu,X〉.

And using divergence theorem we can finish the proof. ♣

Theorem 2.1.2: Dirichlet Principle

Suppose (M, g) is a compact connected Riemannian manifold with nonempty boundary. Then a

function u ∈ C∞(M) is harmonic if and only if∫
M

|gradu|2dVg = min
f |∂M=u|∂M

∫
M

|gradf |2dVg.

Proof. For any fixed f ∈ C∞(M) and f |∂M = 0, then from integration by parts,∫
M
udivXdVg +

∫
M
〈gradu,X〉dVg =

∫
∂M

u〈X,N〉dVĝ,

then we actually have∫
M
af∆udVg +

∫
M
〈gradu, gradaf〉dVg =

∫
∂M

afNudVĝ,
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Then we have for all f |∂M = 0,∫
M

|grad(u+ af)|2dVg −
∫
M

|gradu|2dVg

= a2
∫
M

|gradf |2dVg + 2a

∫
M
〈gradu, gradf〉dVg

= a2
∫
M

|gradf |2dVg − 2a

∫
M
f∆udVg,

thus on the one hand, if u is harmonic, then for arbitary f |∂M = 0, we have∫
M

|grad(u+ af)|2dVg −
∫
M

|gradu|2dVg = a2
∫
M

|gradf |2dVg ≥ 0,

i.e., whichminimizes the integral. On the onther hand, for arbitary p ∈M◦, (ifM◦ = ∅, thenM = ∂M ,

there is nothing needs to show), then there is r > 0 such that Br(p) ⊆M and consider a smooth cut off

function 0 ≤ ρ ≤ 1 such that it is supported in Br/2(p).

Then consider smooth function g = ρ∆u which is naturally vanishes on ∂M , if gradg already

identically zero onM , then choose a > 0 one can see that we muast have

K :=

∫
M
ρ(∆u)2dVg =

∫
Br(p)

ρ(∆u)2 = 0,

if not, then sinceK > 0, so we can choose

0 < a <
K∫

M |gradg|2dVg
⇒

∫
M

|grad(u+ ag)|2dVg <
∫
M

|gradu|2dVg

which is a contradiction, then we know that we must haveK = 0, i.e.,∆u ≡ 0 on Br(p), now sinceM

is compact, we know∆u ≡ 0, thus we know that u is harmonic function. ♣
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2.2 Problems

Problem 1. Show that every Riemmanian 1-manifold is flat.

Proof. Recall that it is suffices to show that every point has a neighborhhood that is isometric to an

open set in R with its Euclidean metric g. For given p ∈M , and choose a coordinate neighborhood U of

p with coordinate x, then supposeN(q) = gq(∂/∂x|q, ∂/∂x|q) is a smooth function on U , then consider

y = x/
√
N , thus gq(∂/∂y, ∂/∂y) = 1, thus (U, y) is as desired. ♣

Remark. Actually, we will soon know that flat means that the curvature vanishes, since the curvature is

a 2 -form, it vanishes on a 1-manifold.

Problem 2. Suppose V andW are finite-dimensional real inner product spaces of the same dimension,

and F : V → W is any map satisfies F (0) = 0 and |F (x) − F (y)| = |x − y| for all x, y ∈ V , Prove

that F is a linear isometry.

Proof. Recall that a linear isometry is a vector space isomorphism which preserves inner product, let

y = 0 then the latter is trivial, and F is naturally injective, so the only thing needs to prove is that F is

linear. Note that 〈F (av)− aF (v), F (av)− aF (v)〉 = |F (av)|2 − 2a2〈F (av), F (v)〉+ a2|F (v)|2 = 0,

thus F (av) = aF (v), using the same method one can shows that F (av + bw) = aF (v) + bF (w), then

F is linear, then we finish the proof. ♣

Problem 3. Given a smooth embedded 1-dimensional submanifold C ⊆ H , then the surface of revolu-

tion SC ⊆ R3 with its induced metric is isometric to the warped produt C ×a S
1.

Proof. Suppose C = (a(s), b(s)) where s is the length paramter, then a′(s)2 + b′(s)2 = 1, then we

have X(s, θ) = (a(s) cos θ, a(s) sin θ, b((s))), then g represents by (s, θ) is

g = X∗g = (a′(s)2 + b′(s)2)(ds)2 + a2(s)dθ2 = ds2 + a2(s)dθ2,

since it has same formula with C ×a S
1, then the isomorphism is trivial. ♣

Problem 4. Let ρ : R+ → R be the restriction of the standard coordinate function, and let R+×ρ S
n−1

be the warped product. Define Φ : R+ ×ρ S
n−1 → Rn − {0} by Φ(ρ, ω) = ρω. Show that Φ is an

isometry between them.
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Proof. Recall an isometry is diffeomorphism + ϕ∗g′ = g, since diffeomorphism is trivial, so it suffices

to show the metric equation. Since g = dρ2 + ρ2dω2, and for ω = (ω1, · · · , ωn−1,
√

1− (ωi)2), and

dω2 is the round metric of Sn−1,and recall then

Φ∗g = Φ∗ ((dx1)2 + · · ·+ (dxn)2
)
= (dΦ1)2 + · · ·+ (dΦn)2

=

n∑
i=1

(
∂Φi

∂ρ
dρ+

∂Φi

∂ωj
dωj

)2

=

n−1∑
i=1

(ωidρ+ ρdωi)2 +

(√
1− (ωi)2dρ+ ρd

√
1− (ωi)2

)2

= dρ2 + ρ2
(
(dω1)2 + · · ·+ (dωn−1)2 +

(
d
√
1− (ω1)2 − · · · − (ωn−1)2

)2)
= dρ2 + ρ2dω2 = g,

Finally, we finish the proof, and note ωn =
√
1− (ω1)2 − · · · − (ωn−1)2. ♣
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Model Riemannian Manifolds
3

3.1 Notes

Definition 3.1.1

A Riemannian manifold (M, g) is called a homogeneous Riemannian manifold if Iso(M, g)

acts transitively onM , i.e., for each pair of points p, q ∈ M , there is an isometry ϕ : M → M

such that ϕ(p) = q.

15
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3.2 Grometry of Lie Groups



Connections
4

4.1 Notes
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4.2 Some Calculations

∇ : T (k,l)TM → T (k,l+1)TM , with ∇F (· · · , X) = ∇XF and

(∇XF )(ω
1, · · · , ωk, X1, · · · , Xl)

= X(F (ω1, · · · , ωk, X1, · · · , Xl))

−
l∑

j=1

F (ω1, · · · ,∇Xω
i, · · · , ωk, X1, · · · , Xl)

−
k∑

i=1

F (ω1, · · · , ωk, X1, · · · ,∇XXj , · · · , Xl).

We use the notation F i1···ik
j1···jl;m denotes them compoent of ∇F , and

∇2
X,Y F := ∇2F (· · · , Y,X),

we now show that ∇2
X,Y F = ∇X(∇Y F )−∇∇XY F .

Proof. We firstly show that

∇Y F = tr(∇F ⊗ Y ),

WLOG we assume Y = Em, then we have∇EmF = F i1···ik
j1···jl;m, and since

(∇F ⊗ Em)i1···ikmj1···jljl+1
= F i1···ik

j1···jl;jl+1
,

thus we have tr(F ⊗ Y ) = F i1···ik
j1···jl;m, so we know that they agree. Then the last is trivial. ♣

Now for Hessian of u, ∇2u is a (0, 2) tensor,∇u = u;ijdxi ⊗ dxj , and

∇2u(Y,X) = ∇X(∇Y u)−∇∇−XY u = X(Y (u))− (∇XY )u,

so we have u;ij = ∂i(∂ju)− (Γk
ij)∂ku = ∂i∂ju− Γk

ij∂ku .



Remiander

1. Propsition 2.9 and Exercise 2.10, I don’t know how to describe the topology of UTM , although

it is sphere bundle overM ;

19
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