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1 Problem 12.1
Problem. Define the distribution u ∈ D′(R) by

(u, ψ) :=

∫ 1

−1

ψ(x)− ψ(0)

x
dx+

∫
|x|≥1

ψ(x)

x
dx.

Show that u = PV[x−1].

Proof. For ψ ∈ C∞
cpt(R), we need to prove

(u, ψ) = lim
ε→0+

∫
|x|≥ε

ψ(x)

x
dx.

Note that when ε < 1, we have∫
|x|≥ε

ψ(x)

x
dx =

∫
|x|≥1

ψ(x)

x
dx+

(∫ −ε

−1

+

∫ 1

ε

)
ψ(x)

x
dx.

Since ψ is differentiable at x = 0, ψ(x)−ψ(0)
x is bounded when x ∈ [−1, 1]. Hence∫ 1

−1

ψ(x)− ψ(0)

x
dx

exists. We also note that (∫ −ε

−1

+

∫ 1

ε

)
ψ(0)

x
dx = ψ(0)(log ε− log ε) = 0,

thus we have

lim
ε→0+

∫
|x|≥ε

ψ(x)

x
dx = lim

ε→0+

[∫
|x|≥1

ψ(x)

x
dx+

(∫ −ε

−1

+

∫ 1

ε

)
ψ(x)− ψ(0)

x
dx

]

=

∫ 1

−1

ψ(x)− ψ(0)

x
dx+

∫
|x|≥1

ψ(x)

x
dx.

Hence we complete the proof.
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2 Problem 12.2
Problem. Let f ∈ L1

loc(R) be the function

f(x) =

{
log x, x > 0,

− log(−x), x < 0.

Show that the distributional derivative is

(f ′, ψ) =

∫ 1

−1

ψ(x)− ψ(0)

|x|
dx+

∫
|x|≥1

ψ(x)

|x|
dx.

Proof. By the definition of the distributional derivative, we have

(f ′, ψ) = −(f, ψ′) = −
∫ +∞

0

ψ′(x) log xdx+

∫ 0

−∞
ψ′(x) log(−x)dx.

Since ψ has compact support, there exixts A > 0, suppψ ⊆ (−A,A),

−
∫ +∞

1

ψ′(x) log xdx = −
∫ A

1

ψ′(x) log xdx = ψ(x) log x|A1 +

∫ A

1

ψ(x)

x
dx =

∫ +∞

1

ψ(x)

x
dx.

Similarly, we have ∫ −1

−∞
ψ′(x) log(−x)dx =

∫ −1

−∞

ψ(x)

|x|
dx.

Note that

−
∫ 1

0

ψ′(x) log xdx+

∫ 0

−1

ψ′(x) log(−x)dx

= lim
ε→0+

(
−
∫ 1

ε

ψ′(x) log xdx+

∫ −ε

−1

ψ′(x) log(−x)dx
)

= lim
ε→0+

[(∫ 1

ε

+

∫ −ε

−1

)
ψ(x)

|x|
dx+ ψ(ε) log ε+ ψ(−ε) log ε

]
=

∫ 1

−1

ψ(x)− ψ(0)

|x|
dx

+ lim
ε→0+

[
−
(∫ 1

ε

+

∫ −ε

−1

)
ψ(0)

|x|
dx+ ψ(ε) log ε+ ψ(−ε) log ε

]
.

Where we use ψ is differentiable at 0, ψ(x)−ψ(0)
|x| is bounded. Suppose max|x|≤1 |ψ′(x)| =M , then we have∣∣∣∣−(∫ 1

ε

+

∫ −ε

−1

)
ψ(0)

|x|
dx+ ψ(ε) log ε+ ψ(−ε) log ε

∣∣∣∣
= |(ψ(ε)− ψ(0)) log ε+ (ψ(−ε)− ψ(0)) log ε|
≤ 2Mε · log ε→ 0, as ε→ 0+.

Hence we have
−
∫ 1

0

ψ′(x) log xdx+

∫ 0

−1

ψ′(x) log(−x)dx =

∫ 1

−1

ψ(x)− ψ(0)

|x|
dx,

and finally we complete the proof.
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3 Problem 12.3
Problem. Let H denote the upper half-plane {x2 > 0} ⊆ R2. The goal of this problem is to show that the Laplace
equation on H,

∆u = 0, u(·, 0) = g,

has the solution
u(y) =

1

π

∫
R

y2
(x− y1)2 + y22

g(x)dx

for g ∈ C∞
cpt(R).

1. Derive this formula from Theorem 12.10 of [1] using the method of images as in Example 12.11. In this case
the reflection of y ∈ H is given by (y1, y2) = (y1, y2) (the complex conjugate).

2. Show that the fact that u(·, 0) = g could also be derived by using lemma 12.1 of [1] to deduce that

lim
x→0

y

π(x2 + y2)
= δ(y).

Proof. From theorem 12.10 of [1], we have

u(y) = −
∫
∂H
g(x1)

∂Gy(x1)

∂υ
dx1 =

∫
x2=0

g(x1)
∂Gy(x1)

∂x2
dx1,

where Gy is the Green’s function of H. We define G̃y(x) = Φy(x)− Φỹ(x) = − 1

2π
log |x−y|

|x−ỹ| . Now it is clear that{
−∆G̃y = −∆Φy −∆Φỹ = δ(x− y),

G̃y(x) = 0, on x1 = 0.

Hence G̃y(x) = Gy(x) is the Green’s function. Thus we have

u(y1, y2) = − 1

2π

∫
R
g(x1)

∂

∂x2
(log |x− y| − log |x− ỹ|) dx1.

Since
∂

∂x2
log |x− y| = x2 − y2

|x− y|2
,

∂

∂x2
log |x− ỹ| = x2 + y2

|x− ỹ|2
,

we have (
∂

∂x2
(log |x− y| − log |x− ỹ|)

) ∣∣∣∣
x2=0

=
−2y2

|x− y|2

∣∣∣∣
x2=0

=
−2y2

(x1 − y1)2 + y22
.

Hence we know that
u(y1, y2) =

1

π

∫
R

y2
(x− y1)2 + y22

g(x)dx.

Now we only need to check u(·, 0) = g. By direct calculation, we have

1

π

∫
R

y2
(x− y1)2 + y22

dx = 1,

thus
|u(y1, y2)− g(y1)| =

1

π

∣∣∣∣∫
R

y2
(x− y1)2 + y22

(g(x)− g(y1))dx

∣∣∣∣ → 0

as y2 → 0. Thus we have u(y1, 0) = g(y1). Finally we finish the proof.
(2)Recall in lemma 12.1 of [1], if

∫
R f(x1)dx1 < +∞, then af(ax1) → δ(x1) as a→ +∞. Take

f(x1) =
1

π(1 + x21)
,
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and choose a = 1
y2

as y2 → 0. Then we have

1

y2
· 1

π

(
1 +

(
x1

y2

)2
) =

1

π
· y2
y22 + x21

→ δ(x1).

Thus
u(y1, y2)

y2→0−→
∫
R
δ(x1 − y1)g(x1)dx1 = (δ ∗ g)(y1) = g(y1).

Finally, we finish the proof.

4 Problem 12.4
Problem. In R3 show that

(−∆− k2)
eikr

4πr
= δ

for all k ∈ R.

Proof. For ψ ∈ C∞
cpt(R), we need to prove∫

R3

(−∆− k2)
eikr

4πr
· ψ(x)dx = ψ(0).

Since
(
∆ eikr

4πr , ψ
)
=

(
eikr

4πr ,∆ψ
)

, we have

∫
R3

∆
eikr

4πr
· ψ(x)dx =

∫
R3

eikr

4πr
·∆ψ(x)dx.

Note that ψ is compactly supported, hence we have

−
∫
R3

eikr

4πr
·∆ψ(x)dx =

∫
R3

∇ eikr

4πr
· ∇ψ(x)dx

=

∫
R3

(ikr − 1)eikr

4πr3
x · ∇ψdx

=

∫
R3

(ikr − 1)eikr

4πr2
∂ψ

∂r
dx

=

∫
S2
dS

∫ ∞

0

(ikr − 1)eikr

4π

∂ψ

∂r
dr

=

∫
S2

(
ψ(0)

4π
−

∫ ∞

0

−k2reikr

4π
ψdr

)
dS

= ψ(0)−
∫
S2
dS

∫ ∞

0

−k2reikr

4π
ψdr

= ψ(0)−
∫
R3

−k2eikr

4πr
ψ(x)dx.

Hence we have ∫
R3

−∆

(
eikr

4πr

)
ψ − k2

eikr

4πr
ψdx = ψ(0),

then we finish the proof.

References
[1] D. Borthwick, Introduction to partial differential equations. Springer, 2017.

4


	Problem 12.1
	Problem 12.2
	Problem 12.3
	Problem 12.4

