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1 Problem 8.1
Problem. For x ∈ (0, π), let

f(x) = x,

(a) Extend f to an odd function on T and compute the periodic Fourier coefficients;

(b) Show that the convergence of the Fourier series at x = π
2 yields the summation formula

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

(c) Show the Parseval identity leads to the formula
∞∑
k=1

1

k2
=

π2

6
.

Solution. (a) Extending f to an odd function on T, we have f(x) = x when x ∈ (−π, π). Hence,

c0[f ] =
1

2π

∫ π

−π

xdx = 0,

ck[f ] =
1

2π

∫ π

−π

xe−ikxdx =
1

2π

∫ π

−π

x(cos kx− i sin kx)dx

=
i

2π

(
−x cos kx

k

∣∣∣∣π
−π

+

∫ π

−π

cos kx

k
dx

)
=

(−1)k+1 · i
k

.

Furthermore, we have

Sn[f ](x) =

n∑
k=−n

ck[f ]e
ikx =

n∑
k=−n

(−1)k+1 · i
k

(cos kx+ i sin kx)

=

n∑
k=1

(
(−1)k+1 · i

k
+

(−1)k+1 · i
−k

)
cos kx+

n∑
k=1

(
(−1)k+1

k
+

(−1)k+1

k

)
sin kx

=

n∑
k=1

(−1)k+1 · 2
k

sin kx.
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(b) From theorem 8.3 of [1] and f(x) = x is differentiable at x = π
2 , we have

lim
n→∞

Sn[f ]
(π
2

)
= f

(π
2

)
.

Hence,
π

4
=

1

2

∞∑
k=1

(−1)k+1

k
sin

kπ

2
= 1− 1

3
+

1

5
− 1

7
+ · · · .

(c)From corollary 8.7 of [1] and f ∈ L2(T), we have∑
k∈Z

|ck[f ]|2 =
1

2π
||f ||L2 .

Since ∑
k∈Z

|ck[f ]|2 =
∑
k∈Z∗

1

k2
= 2

∞∑
k=1

1

k2
,

and
1

2π
||f ||L2 =

1

2π

∫ π

−π

x2dx =
1

2π
· 2π

3

3
=

π2

3
.

Then we have
∞∑
k=1

1

k2
=

π2

6
.

Finally we finish this problem.

2 Problem 8.2
Problem. For x ∈ (0, π), let

f(x) = x,

(a) Extend f to a even function on T and compute the periodic Fourier coefficients;

(b) Show that the convergence of the Fourier series at x = 0 yields the summation formula
∞∑
k=1

1

(2k − 1)2
=

π2

8
.

(c) Show the Parseval identity leads to the formula ∑
k∈Nodd

1

k4
=

π4

96
.

Solution. (a) Extending g to an even function on T, we have g(x) = |x| when x ∈ (−π, π). Hence,

c0[f ] =
1

2π

∫ π

−π

|x|dx =
π

2
,

ck[f ] =
1

2π

∫ π

−π

|x|e−ikxdx =
1

2π

∫ π

−π

|x|(cos kx− i sin kx)dx

=
1

π

(
x sin kx

k

∣∣∣∣π
0

−
∫ π

0

sin kx

k
dx

)
=

(−1)k − 1

k2π
.

Furthermore, we have

Sn[f ](x) =

n∑
k=−n

ck[f ]e
ikx =

n∑
k=−n

(−1)k − 1

k2π
(cos kx+ i sin kx)

=
π

2
− 4

π

∞∑
k=1

cos(k − 1)x

(2k − 1)2
.
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(b) At x = 0 and for ε = 1, we have

ess− supy∈[−1,1]

∣∣∣∣f(x)− f(x− y)

y

∣∣∣∣ = ess− supy∈[−1,1]

∣∣∣∣ |x| − |x− y|
y

∣∣∣∣ ≤ 1.

Now From theorem 8.3 of [1], we have
lim
n→∞

Sn[g] (0) = g (0) .

Hence,
∞∑
k=1

1

(2k − 1)2
=

π2

8
.

(c)From corollary 8.7 of [1] and g ∈ L2(T), we have∑
k∈Z

|ck[g]|2 =
1

2π
||g||L2 .

Since ∑
k∈Z

|ck[g]|2 =
π2

4
+

∑
k∈Nodd

8

k4π2
,

and
1

2π
||g||L2 =

1

2π

∫ π

−π

x2dx =
1

2π
· 2π

3

3
=

π2

3
.

Then we have ∑
k∈Nodd

1

k4
=

π4

96
.

Finally we finish this problem.

3 Problem 8.3
Problem. Consider the periodic wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0

for t ∈ R and x ∈ T. Suppose the initial conditions are

u(0, x) = g(x),
∂u

∂t
(0, x) = h(x),

for g ∈ Cm+1(T) and h ∈ Cm(T), for m ∈ N.

(a) Assuming that u(t, x) can be represented as a Fourier series

u(t, x) =
∑
k∈Z

ak(t)e
ikx, (3.1)

find an expression for ak(t) in terms of the Fourier coefficients of g and h.

(b) Using the assumptions on g and h, show that the coefficients ak(t) satisfy an estimate∑
k∈Z

k2m|ak(t)|2 ≤ M < ∞,

uniformly for t ∈ R.

(c) What could you conclude about the differentiability of u?
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Proof. (a) We extend g and h to be functions defined on R. From theorem 4.1 of [1], we have

u(t, x) =
1

2
[g(x+ t) + g(x− t)] +

1

2

∫ x+t

x−t

h(τ)dτ. (3.2)

Suppose
g(x) =

∑
k∈Z

ck[g]e
ikx, h(x) =

∑
k∈Z

ck[h]e
ikx.

Since h ∈ Cm(T), we can interchange the integral and summation from Lebesgue dominated convergence theorem.
Hence we have

u(t, x) =
∑
k∈Z

eikx
(
1

2
ck[g](e

ikt + e−ikt)

)
+
∑
k∈Z

eikx
(

1

2ik
ck[h](e

ikt − e−ikt)

)
=
∑
k∈Z

eikx
(
ck[g] cos kt+ ck[h] ·

sin kt

k

)
.

Hence we have

ak(t) = ck[g] cos kt+ ck[h] ·
sin kt

k
.

(b) From Cauchy-Schwarz inequality, we have

|ak(t)|2 =

(
ck[g] cos kt+ ck[h] ·

sin kt

k

)2

≤
(
|ck[g]|2 +

|ck[h]|2

k2

)
(cos2 kt+ sin2 kt) = |ck[g]|2 +

|ck[h]|2

k2
.

Now from theorem 8.10 of [1], and g ∈ Cm+1(T) and h ∈ Cm(T). We have∑
k∈Z

k2m|ck[g]|2 = M1 < ∞,
∑
k∈Z

k2m−2|ck[h]|2 = M2 < ∞.

Thus ∑
k∈Z

k2m|ak(t)|2 ≤
∑
k∈Z

(
k2m|ck[g]|2 + k2m−2|ck[h]|2

)
= M1 +M2 < ∞,

uniformly for t ∈ R.
(3) From Cauchy-Schwarz inequality, we have(∑

k∈Z∗

|km−1ak(t)|

)2

≤

(∑
k∈Z

k2m|ak(t)|2
)

·

(∑
k∈Z∗

1

k2

)
≤ π2(M1 +M2)

3
< ∞.

Hence, from
∑

k∈Z |km−1ak(t)| < ∞ and theorem 8.12 of [1], we have u(t, ·) ∈ Cm−1(T) for t > 0.
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