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Abstract

I select five problems to solve from [1].
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1 Problem 6.1

Problem. Find a formula for the the reaction-diffusion equations

du

5 +yu—Au =0

on R™ with initial condition uw(0,x) = f(x), where we assume f continuous and bounded.

Solution. Let u(t,x) = e " w(t,x), then by direct calculation, we have

ow

ot

0=—vye Mw4e " +ye M — e 7 Aw,

so since e~ 7% # 0, we can transfer (1.1) to the heat equation below

W Aw=0
ot v

with initial condition w(0,x) = f(x), so we have a classical solution for (1.2):

wit, ) = Hy * f(z) = (4rt) "3 / o121t f () dy,

n

then we have

u(t, x) = (dt) e / o lm /i f () dy
RTI,

is a soulution of (1.1).


https://mmkaymath.github.io/KaiZhu.github.io/

2 Problem 6.3

Problem. Let Q C R™ be a bounded domain with piecewise C* boundary. Suppose that u(t,x) satisfies the heat

equation

ou

on (0,00) x Q, we define the total thermal energy at time t by

v t] :/Qu(t,w)da:. (2.2)

(a) Assume that u satisfies Neumann boundary conditions,

ou

5 =0, (2.3)

[219]

show that % is constant.

(b) Assume that u is positive in the interior of Q and equals 0 on the boundary. Show that % (t) is decreasing in
this case.

Proof. (a) Since € is bounded, so we have

%%[t] / —da: = / Audx = /(m —dS =0, (2.4)

then we know that Z [t] = % [0] is a constant.
(b) As (2.4) shows, we still have
d 0
S = s, (2.5)
dt aq OV
then since v is the outward unit normal vector, so by definition, for any x € 92,  + tv € Q when ¢ < 0, then from

u(x +tv) > 0 and u(x) = 0, so we have u(x + tv) — u(x) > 0, while t — 07, then

ou . u(z +tv) — u(x) <0

—(x)=1 , 2.6
5™ = g t = (26)
so the integral of (2.5) is nonpositive, so we have % [t] is decreasing. O

3 Problem 6.4

Problem. Let Q C R™ be a bounded domain with piecewise C* boundary. Suppose that u(t,x) satisfies the heat
equation

Ou
n (0,00) x Q. Define

n(t) := / u(t, x)?de. (3.2)
Q
(a) Assume that u satisfies the Dirichlet boundary conditions:
u(t, @)|zecoq = 0 (3.3)
fort > 0. Show that n decreases as a function of t.

(b) Use (a) to show that a solution u satisfying boundary and initial conditions
uli=0 =9, ulzcoo =h, (3.4)

for some continuous functions g on Q and h on 99, is uniquely determined by g and h.



Proof. (a) Since € is bounded, we have

dn ou 9 ou 9
—_— = - —_ = . = — R —— = — < .
I 2/Qu 5‘tdw 2/Qu Audzx 2/Q|Vu| dw+2/89uavd5’ 2/§2Wu\ de <0, (3.5)

so we have n decreases as a function of ¢.
(b) Suppose u; and us are solutions of (3.1) with (3.4), then we have u; — us is a solution of (3.1) with

ult=0 =0, ulzeon =0, (3.6)

then from (a) we have for such u, 7(t) decreases, and since 7(0) = 0, and n(t) > 0 for all ¢, thus n(t) = 0, then we
have v =0, i.e., u; = u9, so we have the solution is uniquely determined by g and h. O

4 Problem 7.6

Problem. Suppose that u solves the heat equation with
u|t=T = 0, U|wEaQ =0. (4.1)
The goal is to show that these assumptions imply uw =0 for all t.

(a) Use the Cauchy-Schwarz inequality to deduce that

ou
' ()% < 4n(t) /Q o | (4.2)
where 1 is defined as in (3.2)
(b) Show that
" ou?
(t)=4 S¥n de, (4.3)

so that the inequality from (a) becomes

(¢) Show that if n(0) > 0, then n is positive for all t > 0.
(d) Conclude from (c) that if n(T) =0, then n(t) =0 for all t, and deduce that u = 0.
Proof. (a) From (3.5), we have

'(t)? =4 (/ a“da;)2 <4 (/ 2d:c> / 0u 12\ — 4 (t)/ oul’ 1 (4.5)
= U= u — = — . .
K o ot ) = Uy ol ot T o ot
(b) By direct calculations, we have

=3 (2 [u Paw) =2 [ |2 ’ / O2u

n'(t) = ” 2 Qu 9 de | =2 ot de + 2 Quat2 de, (4.6)

from heat equation, we have u; := % = Au, thus

0% Ouy ou
—dx = - Aupde = - Audx + — —u—d
/Quaﬁ T /Qu updex /Qut udx </89u6v “tav S),

where we use Green’s formula, then from boundary condition (4.1), we have

8%u
u
q Ot?

de = /Q(ut) da, (4.7)

finally, we insert (4.7) into the (4.6), then we finish the proof.



(c) Since if n(0) > 0, then by continuity log7(t) is defined at least in some neighborhood of ¢ = 0, from (4.4),

00\ _ " (®)n(t) —n(t)?
logn(t))" = ( = >0, 4.8
(log1tt)) n(t) n(t)? “8)
which implies that logn(t) is bounded below by its tangent lines, in particular, we have
n'(0)
logn(t) > logn(0) + t, 4.9
() = logn(0) + 5 (49)
which implies
n(t) > n(0)e™, (4.10)

for ¢ = —1/(0)/n(0), thus if n(0) > 0, then 7 is positive for all ¢ > 0.

(d) If n(T) = 0, then since 7(t) decreases from Problem 6.4, then we have n(t) < 0 for all ¢ > T, and since
naturally n(t) > 0, thus for all t > T, n(t) = 0. Now for ¢t < T, if n(0) > 0, then from (c), 0 = n(T") > n(0)e~* > 0,
which is absurd, so we know that n(0) = 0, so for all 0 <t < T, n(t) = 0, finally, we deduce that n(t) = 0 then u = 0,
then we finish this problem . O

5 Problem 7.8

Problem. Solve two questions below:

(a) Show that
On(x) = \/zsin(nx), n €N, (5.1)
defines an orthonormal sequence in L*(0, ).
(b) For the function u =1, compute the corresponding expansion coefficients,
enl1] = (1, ), (52)
then show that S,[1] — 1 in L*(0,7).
Proof. (a) By direct calculation

(ot = [ By = 2 (5 - 220 "

and also we have when n # m, then

(On, Om) = /OTr ; sin(nz) sin(mx)dx

thus {¢, (z)} defines an orthonormal sequence in L?(0, 7).

(b) By direct calculation,
T2 2 1—(=1)*
cell] :/ 2 sin(ka)dz = \/> 1= (5.5)
0 m m k

then from the theorem 7.9 of [1], we know that S,[1] — 1 in L?(0,7) if and only if

2
D lerlt]l? = ()%, (5.6)
n=1
which is equivalent to
2 « 4
L P (5.7
et (2k+1)
then form mathematical analysis, we have already known that > n% = %2, then we have
> 1 =1 i 1 (1 1) 72 x? (5.5)
ok +1)2 2 2 = 1) 6 T ) :
Pt (2k+1) — k — (2k) 4) 6 8
which is exactly (5.7), then we finish the proof. O
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