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Abstract

I select five problems to solve from [1].
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1 Problem 6.1
Problem. Find a formula for the the reaction-diffusion equations

∂u

∂t
+ γu−∆u = 0 (1.1)

on Rn with initial condition u(0,x) = f(x), where we assume f continuous and bounded.

Solution. Let u(t,x) = e−γtw(t,x), then by direct calculation, we have

0 = −γe−γtw + e−γt ∂w

∂t
+ γe−γtw − e−γt∆w,

so since e−γt ̸= 0, we can transfer (1.1) to the heat equation below

∂w

∂t
−∆w = 0 (1.2)

with initial condition w(0,x) = f(x), so we have a classical solution for (1.2):

w(t,x) = Ht ∗ f(x) = (4πt)−
n
2

∫
Rn

e−|x−y|2/4tf(y)dy, (1.3)

then we have

u(t,x) = (4πt)−
n
2 e−γt

∫
Rn

e−|x−y|2/4tf(y)dy

is a soulution of (1.1).
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2 Problem 6.3
Problem. Let Ω ⊂ Rn be a bounded domain with piecewise C1 boundary. Suppose that u(t, x) satisfies the heat
equation

∂u

∂t
−∆u = 0, (2.1)

on (0,∞)× Ω, we define the total thermal energy at time t by

U [t] =

∫
Ω

u(t,x)dx. (2.2)

(a) Assume that u satisfies Neumann boundary conditions,

∂u

∂v

∣∣∣∣
∂Ω

= 0, (2.3)

show that U is constant.

(b) Assume that u is positive in the interior of Ω and equals 0 on the boundary. Show that U (t) is decreasing in
this case.

Proof. (a) Since Ω is bounded, so we have

d

dt
U [t] =

∫
Ω

∂u

∂t
dx =

∫
Ω

∆udx =

∫
∂Ω

∂u

∂v
dS = 0, (2.4)

then we know that U [t] ≡ U [0] is a constant.
(b) As (2.4) shows, we still have

d

dt
U [t] =

∫
∂Ω

∂u

∂v
dS, (2.5)

then since v is the outward unit normal vector, so by definition, for any x ∈ ∂Ω, x+ tv ∈ Ω when t < 0, then from
u(x+ tv) > 0 and u(x) = 0, so we have u(x+ tv)− u(x) > 0, while t → 0−, then

∂u

∂v
(x) = lim

t→0−

u(x+ tv)− u(x)

t
≤ 0, (2.6)

so the integral of (2.5) is nonpositive, so we have U [t] is decreasing.

3 Problem 6.4
Problem. Let Ω ⊂ Rn be a bounded domain with piecewise C1 boundary. Suppose that u(t, x) satisfies the heat
equation

∂u

∂t
−∆u = 0, (3.1)

on (0,∞)× Ω. Define
η(t) :=

∫
Ω

u(t,x)2dx. (3.2)

(a) Assume that u satisfies the Dirichlet boundary conditions:

u(t,x)|x∈∂Ω = 0 (3.3)

for t ≥ 0. Show that η decreases as a function of t.

(b) Use (a) to show that a solution u satisfying boundary and initial conditions

u|t=0 = g, u|x∈∂Ω = h, (3.4)

for some continuous functions g on Ω and h on ∂Ω, is uniquely determined by g and h.
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Proof. (a) Since Ω is bounded, we have

dη

dt
= 2

∫
Ω

u · ∂u
∂t

dx = 2

∫
Ω

u ·∆udx = −2

∫
Ω

|∇u|2dx+ 2

∫
∂Ω

u
∂u

∂v
dS = −2

∫
Ω

|∇u|2dx ≤ 0, (3.5)

so we have η decreases as a function of t.
(b) Suppose u1 and u2 are solutions of (3.1) with (3.4), then we have u1 − u2 is a solution of (3.1) with

u|t=0 = 0, u|x∈∂Ω = 0, (3.6)

then from (a) we have for such u, η(t) decreases, and since η(0) = 0, and η(t) ≥ 0 for all t, thus η(t) ≡ 0, then we
have u ≡ 0, i.e., u1 ≡ u2, so we have the solution is uniquely determined by g and h.

4 Problem 7.6
Problem. Suppose that u solves the heat equation with

u|t=T = 0, u|x∈∂Ω = 0. (4.1)

The goal is to show that these assumptions imply u = 0 for all t.

(a) Use the Cauchy-Schwarz inequality to deduce that

η′(t)2 ≤ 4η(t)

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx, (4.2)

where η is defined as in (3.2)

(b) Show that

η′′(t) = 4

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx, (4.3)

so that the inequality from (a) becomes
η′(t)2 ≤ η(t)η′′(t). (4.4)

(c) Show that if η(0) > 0, then η is positive for all t ≥ 0.

(d) Conclude from (c) that if η(T ) = 0, then η(t) = 0 for all t, and deduce that u = 0.

Proof. (a) From (3.5), we have

η′(t)2 = 4

(∫
Ω

u · ∂u
∂t

dx

)2

≤ 4

(∫
Ω

u2dx

)(∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx

)
= 4η(t)

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx. (4.5)

(b) By direct calculations, we have

η′′(t) =
d

dt

(
2

∫
Ω

u · ∂u
∂t

dx

)
= 2

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣2 dx+ 2

∫
Ω

u
∂2u

∂t2
dx, (4.6)

from heat equation, we have ut :=
∂u
∂t = ∆u, thus∫

Ω

u
∂2u

∂t2
dx =

∫
Ω

u ·∆utdx =

∫
Ω

ut ·∆udx+

(∫
∂Ω

u
∂ut

∂v
− ut

∂u

∂v
dS

)
,

where we use Green’s formula, then from boundary condition (4.1), we have∫
Ω

u
∂2u

∂t2
dx =

∫
Ω

(ut)
2dx, (4.7)

finally, we insert (4.7) into the (4.6), then we finish the proof.

3



(c) Since if η(0) > 0, then by continuity log η(t) is defined at least in some neighborhood of t = 0, from (4.4),

(log η(t))′′ =

(
η′(t)

η(t)

)′

=
η′′(t)η(t)− η(t)2

η(t)2
≥ 0, (4.8)

which implies that log η(t) is bounded below by its tangent lines, in particular, we have

log η(t) ≥ log η(0) +
η′(0)

η(0)
t, (4.9)

which implies
η(t) ≥ η(0)e−ct, (4.10)

for c = −η′(0)/η(0), thus if η(0) > 0, then η is positive for all t ≥ 0.
(d) If η(T ) = 0, then since η(t) decreases from Problem 6.4, then we have η(t) ≤ 0 for all t > T , and since

naturally η(t) ≥ 0, thus for all t > T , η(t) = 0. Now for t ≤ T , if η(0) > 0, then from (c), 0 = η(T ) ≥ η(0)e−ct > 0,
which is absurd, so we know that η(0) = 0, so for all 0 ≤ t ≤ T , η(t) = 0, finally, we deduce that η(t) ≡ 0 then u ≡ 0,
then we finish this problem .

5 Problem 7.8
Problem. Solve two questions below:
(a) Show that

ϕn(x) :=

√
2

π
sin(nx), n ∈ N, (5.1)

defines an orthonormal sequence in L2(0, π).

(b) For the function u ≡ 1, compute the corresponding expansion coefficients,

ck[1] := ⟨1, ϕk⟩, (5.2)

then show that Sn[1] → 1 in L2(0, π).
Proof. (a) By direct calculation

⟨ϕn, ϕn⟩ =
∫ π

0

2

π
sin2(nx)dx =

2

π

(
x

2
− sin(2nx)

4n

) ∣∣∣∣π
0

= 1, (5.3)

and also we have when n ̸= m, then

⟨ϕn, ϕm⟩ =
∫ π

0

2

π
sin(nx) sin(mx)dx =

2

π

(
sin(m− n)x

2(m− n)
− sin(m+ n)x

2(m+ n)

) ∣∣∣∣π
0

= 0, (5.4)

thus {ϕn(x)} defines an orthonormal sequence in L2(0, π).
(b) By direct calculation,

ck[1] =

∫ π

0

√
2

π
sin(kx)dx =

√
2

π
· 1− (−1)k

k
, (5.5)

then from the theorem 7.9 of [1], we know that Sn[1] → 1 in L2(0, π) if and only if
∞∑

n=1

|ck[1]|2 = ∥1∥2 , (5.6)

which is equivalent to
2

π
·

∞∑
k=1

4

(2k + 1)2
= π, (5.7)

then form mathematical analysis, we have already known that
∑

1
n2 = π2

6 , then we have
∞∑
k=1

1

(2k + 1)2
=

∞∑
k=1

1

k2
−

∞∑
k=1

1

(2k)2
=

(
1− 1

4

)
π2

6
=

π2

8
, (5.8)

which is exactly (5.7), then we finish the proof.
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