2023 Fall Partial Differential Equations Exercise 1: Wave Equations

2021 Chern Class 2113696 KAI ZHU

September 15, 2023

Abstract

I select five problems to solve from [1].

Contents

1	Problem 3.3	1
2	Problem 3.7	2
3	Problem 4.4	3
4	Problem 4.5	3
5	Problem 4.9	4

1 Problem 3.3

Problem. Assume that u satisfies the linear conservation equation

$$\frac{\partial u}{\partial t} + 2t \frac{\partial u}{\partial x} = 0, \tag{1.1}$$

for $t \in \mathbb{R}$ and $x \in [0, 1]$, suppose the boundary conditions are given by

$$u(t,0) = h_0(t), \quad u(t,1) = h_1(t)$$

Find a relation between h_0 and h_1 .

Solution. Firstly, from the ODE $\frac{dx(t)}{dt} = 2t$, we can solve that $x(t) = t^2 + x_0$ for some constant x_0 , then we have

$$\frac{Du(t, x(t))}{Dt} \equiv 0, \quad \Longrightarrow u(t, x(t)) = C$$

for some another constant C depends on x_0 , now from the initial conditions, we have $u(t, t^2 + x_0) = C(x_0)$, then when $t^2 + x_0 = 0$, we have $h_0(t) = u(t, 0) = C(x_0) = C(-t^2)$, similarly, we have $h_1(t) = u(t, 1) = C(x_0) = C(1 - t^2)$, so if (1.1) has a solution u, then for each $t_0, t_1 \in \mathbb{R}$, if $-t_0^2 = 1 - t_1^2$, then we have $h_0(t_0) = h_1(t_1)$, in summary

$$h_0(t_0) = h_1(t_1), \text{ if } t_1^2 - t_0^2 = 1,$$

is a relation that h_0 and h_1 should satisfy.

2 Problem 3.7

Problem. In the mid-19th century, William Hamilton and Carl Jacobi developed a formulation of classical mechanics based on ideas from geometric optics. In this approach the dynamics of a free particle in \mathbb{R} are described by a generating function u(t, x) satisfying the Hamilton-Jacobi equation:

$$\frac{\partial u}{\partial t} + \frac{1}{2} \left(\frac{\partial u}{\partial x}\right)^2 = 0.$$
(2.1)

Assume that $u \in C^1([0,\infty) \times \mathbb{R}^n)$ is a solution of (2.1). We define a characteristic of (2.1) is a solution of

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \frac{\partial u}{\partial x}(t, x(t)), \quad x(0) = x_0.$$
(2.2)

- (a) Assuming that x(t) solves (2.1), use the chain rule to compute $\frac{d^2x}{dt^2}$.
- (b) Differentiate (2.1) with respect to x and then restrict the result to (t, x(t)), where x(t) solves (2.2). Conclude from (a) that to

$$\frac{\mathrm{d}^2 x}{\mathrm{d}^2 t} = 0$$

Hence, for some constant v_0 (which depends on the characteristic),

$$x(t) = x_0 + v_0 t.$$

(c) Show that the Lagrangian derivative of u along x(t) satisfies

$$\frac{Du}{Dt} = \frac{1}{2}v_0^2,$$

imply that

$$u(t, x_0 + v_0 t) = u(0, x_0) + \frac{1}{2}v_0^2 t.$$

(d) Use this approach to find the solution u(t, x) under the initial condition

$$u(0,x) = x^2$$

Solution. (a) By direct calculation, we have

$$\frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\partial u}{\partial x}(t, x(t)) \right) = \frac{\partial^2 u}{\partial x \partial t}(t, x(t)) + \dot{x}(t) \frac{\partial^2 u}{\partial x^2}(t, x(t)),$$

in short we actually have

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{\partial^2 u}{\partial x \partial t} + \frac{\partial u}{\partial x} \cdot \frac{\partial^2 u}{\partial x^2}.$$

(b) Differentiate (2.1), we have

$$\frac{\partial^2 u}{\partial t \partial x} + \frac{\partial u}{\partial x} \cdot \frac{\partial^2 u}{\partial x^2} = 0,$$

trivially, from (a) we have

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 0.$$

Then we solve this ODE with initial condition $x(0) = x_0$, there exists a constant v_0 such that $x(t) = x_0 + v_0 t$. (c) By direct calculation, we have

$$\frac{Du(t,x(t))}{Dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \cdot \dot{x}(t) = \frac{\partial u}{\partial t} + \left(\frac{\partial u}{\partial x}\right)^2 = \frac{1}{2} \left(\frac{\partial u}{\partial x}\right)^2 = \frac{1}{2} (\dot{x}(t))^2 = \frac{1}{2} v_0^2,$$

here we use the identity $\frac{\partial u}{\partial x}(t, x(t)) = \dot{x}(t) = v_0$, so from this we know that $u(t, x(t)) = C + \frac{1}{2}v_0^2 t$ for some constant C, then let t = 0, we have

$$u(t, x_0 + v_0 t) = u(0, x_0) + \frac{1}{2}v_0^2 t.$$

(d) Since $u(0,x) = x^2$, then we have $u(0,x_0) = x_0^2$, then since $x = x_0 + v_0 t$, i.e., $v_0 = \frac{x-x_0}{t}$, on the other hand, note that $\frac{\partial u}{\partial x}(0,x) = 2x$, so we have $\frac{\partial u}{\partial x}(0,x_0) = 2x_0$, note that from (2.2), we have

$$v_0 = \dot{x}(0) = \frac{\partial u}{\partial x}(0, x(0)) = \frac{\partial u}{\partial x}(0, x_0) = 2x_0,$$

so we have $v_0 = 2x_0$ and $x_0 = \frac{x}{1+2t}$, so from the equation we get from (c), i.e., $u(t, x_0 + v_0 t) = x_0^2 + \frac{1}{2}v_0^2 t$, then

$$u(t,x) = \frac{x^2}{1+2t},$$

is the solution we want to find for the initial condition $u(0, x) = x^2$.

3 Problem 4.4

Problem. Consider a string of length ℓ with progagation speed c = 1, i.e., we consider a wave equation as

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = f(t, x) := \cos(\omega t) \sin(\omega_k x), \tag{3.1}$$

with $\omega > 0$ and $\omega_k := \frac{k\pi}{\ell}$ and the initial condition

$$u(0,x) = 0, \quad \frac{\partial u}{\partial t}(0,x) = 0, \tag{3.2}$$

then find the solution u(t,x) including both cases $\omega \neq \omega_k$ and $\omega = \omega_k$.

Solution. By Duhamel's method, we can direct get the expression of u(t, x) by

$$u(t,x) = \frac{1}{2} \int_0^t \int_{x-t+s}^{x+t-s} \cos(\omega s) \sin(\omega_k y) dy ds$$

= $\frac{1}{2\omega_k} \int_0^t [\cos(\omega_k (x-t+s)) - \cos(\omega_0 (x+t-s))] \cos(\omega s) ds$ (3.3)
= $\frac{1}{\omega_k} \int_0^t \sin(\omega_k x) \sin(\omega_k (t-s)) \cos(\omega s) ds.$

Now from the equation above, we have for $\omega \neq \omega_k$ we obtain

$$u(t,x) = \frac{\sin(\omega_k x)}{\omega_k^2 - \omega^2} [\cos(\omega t) - \cos(\omega_k t)],$$

and if $\omega = \omega_k$ then we obtain

$$u(t,x) = \frac{t}{2\omega_k}\sin(\omega_k x)\sin(\omega_k t),$$

now we finish this problem.

4 Problem 4.5

Problem. The telegraph equation is a variant of the wave equation that describes the propagation of electrical signals in a one-dimensional cable:

$$\frac{\partial^2 u}{\partial t^2} + a \frac{\partial u}{\partial t} + bu - c^2 \frac{\partial^2 u}{\partial x^2} = 0, \qquad (4.1)$$

where u(t, x) is the line voltage, c is the propagation speed, and a, b > 0 are determined by electrical properties of the cable (resistance, inductance, etc.). Show that the substitution

$$u(t,x) = e^{-at/2}w(t,x)$$
 (4.2)

reduces the telegraph equation to an ordinary wave equation for w, provided a and b satisfy a certain condition. Find the general solution in this case.

Solution. By direct calculation, we have

$$\frac{\partial}{\partial t} \left(e^{-at/2} w(t, x) \right) = e^{-at/2} \frac{\partial w}{\partial t}(t, x) - \frac{a}{2} e^{-at/2} w(t, x),$$

and

$$\frac{\partial^2}{\partial t^2} \left(\mathrm{e}^{-at/2} w(t,x) \right) = \mathrm{e}^{-at/2} \frac{\partial^2 w}{\partial t^2}(t,x) - a \mathrm{e}^{-at/2} \frac{\partial w}{\partial t}(t,x) + \frac{a^2}{4} \mathrm{e}^{-at/2} w(t,x),$$

so now we from (4.1) and have

$$e^{-at/2}\frac{\partial^2 w}{\partial t^2} + e^{-at/2}\left(b - \frac{a^2}{4}\right)w - c^2 e^{-at/2}\frac{\partial^2 w}{\partial x^2} = 0,$$
(4.3)

so when $4b = a^2$, then we have the ordinary wave equation from (4.3),

$$\frac{\partial^2 w}{\partial t^2} - c^2 \frac{\partial^2 w}{\partial x^2} = 0,. \tag{4.4}$$

So in general, we can transfer a telegrah equation (4.1) with $4b = a^2$ and initial conditions

$$u(0,x) = g(x), \quad \frac{\partial u}{\partial t}(0,x) = h(x), \tag{4.5}$$

to the ordinary wave equation (4.4) with initial conditions

$$w(0,x) = \tilde{g}(x) = g(x), \quad \frac{\partial w}{\partial t}(0,x) = \tilde{h}(x) = h(x) + \frac{a}{2}g(x), \tag{4.6}$$

so now from d'Alembert's formula, we have

$$w(t,x) = \frac{1}{2c} [\widetilde{g}(x+ct) + \widetilde{g}(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \widetilde{h}(\tau) \mathrm{d}\tau, \qquad (4.7)$$

then we have the general solution of (4.1) with initial conditions (4.5) is

$$u(t,x) = \frac{e^{-at/2}}{2c} [g(x+ct) + g(x-ct)] + \frac{e^{-at/2}}{2c} \int_{x-ct}^{x+ct} \left(h(\tau) + \frac{a}{2}g(\tau)\right) d\tau,$$

then we finish this problem.

5 Problem 4.9

Problem. The Klein-Gordon equation in Rn is a variant of the wave equation that appears in relativistic quantum mechanics,

$$\frac{\partial^2 u}{\partial t^2} - \Delta u + m^2 u = 0, \tag{5.1}$$

where m is the mass of a particle.

(a) Find a formula for $\omega = \omega(\mathbf{k}, m)$ under which this equation have solutions of the form

$$u(t, \boldsymbol{x}) = e^{i(\boldsymbol{k} \cdot \boldsymbol{x} - \omega t)}, \qquad (5.2)$$

where $\omega \in \mathbb{R}$ and $\mathbf{k} \in \mathbb{R}^n$ are constants.

(b) Show that we can define a conserved energy $\mathscr E$ for this equation by adding a term proportional to u2 to the integrand in

$$\mathscr{E}(u) = \frac{1}{2} \int_{\Omega} \left[\left(\frac{\partial u}{\partial t} \right)^2 + |\nabla u|^2 \right] \mathrm{d}\boldsymbol{x}.$$
(5.3)

Solution. (a) Suppose u satisfies (5.1) and (5.2), then by direct calculation, we have

$$\frac{\partial^2 u}{\partial t^2} = \omega^2 e^{i(\boldsymbol{k}\cdot\boldsymbol{x}-\omega t)}, \quad \Delta u = -|\boldsymbol{k}|^2 e^{i(\boldsymbol{k}\cdot\boldsymbol{x}-\omega t)}, \tag{5.4}$$

so we have (5.1) is equivalent to

$$(\omega^2 - |\boldsymbol{k}|^2 + m^2) \mathrm{e}^{i(\boldsymbol{k}\cdot\boldsymbol{x} - \omega t)} = 0, \qquad (5.5)$$

since $|e^{i(\boldsymbol{k}\cdot\boldsymbol{x}-\omega t)}| = 1$, so we have

$$\omega^2 = |\boldsymbol{k}|^2 - m^2$$

is the formula we want to find.

(b) Define

$$\mathscr{E}'(u) = \frac{1}{2} \int_{\mathbb{R}^n} \left[\left(\frac{\partial u}{\partial t} \right)^2 + |\nabla u|^2 + \frac{m^2}{2} u^2 \right] \mathrm{d}\boldsymbol{x},\tag{5.6}$$

and we assume u is compactly supported then we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathscr{E}'(u) = \int_{\mathbb{R}^n} \left[\frac{\partial u}{\partial t} \left(\frac{\partial^2 u}{\partial t^2} - \Delta u + m^2 u \right) \right] \mathrm{d}\boldsymbol{x} = 0,$$

thus we know that the engry $\mathscr{E}'(u)$ is conserved and as desired.

Remark 5.1. In my solution, I assume u is compactly supported, because I cannot prove that $\lim_{|\boldsymbol{x}|\to\infty} u(t, \boldsymbol{x}) = 0$, so I just do the same thing as Prof. Hu has done in dealing with Schrödinger's equation.

References

[1] D. Borthwick, Introduction to partial differential equations. Springer, 2017.