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Abstract
I select five problems to solve from [1].
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1 Problem 3.3

Problem. Assume that u satisfies the linear conservation equation

ou ou
5 F2e =0, (1.1)

fort € R and z € [0, 1], suppose the boundary conditions are given by
u(t,0) = ho(t), u(t,1) = hi(t).
Find a relation between hg and hy.

Solution. Firstly, from the ODE dfl(tt) = 2t, we can solve that x(t) = t? + z¢ for some constant g, then we have

Du(t, z(t))

Di =0, = u(tzt)=C

for some another constant C' depends on xg, now from the initial conditions, we have u(t,t?> + z) = C(zg), then
when t2 + g = 0, we have ho(t) = u(t,0) = C(xq) = C(—t?), similarly, we have hy(t) = u(t,1) = C(zo) = C(1 —t?),
so if (1.1) has a solution u, then for each t,t; € R, if —t2 = 1 — ¢2, then we have ho(tg) = h1(t1), in summary

ho(to) = hi(t1), ift3 —t3 =1,

is a relation that hy and h; should satisfy. O


https://mmkaymath.github.io/KaiZhu.github.io/

2 Problem 3.7

Problem. In the mid-19th century, William Hamilton and Carl Jacobi developed a formulation of classical mechanics
based on ideas from geometric optics. In this approach the dynamics of a free particle in R are described by a generating
function u(t, z) satisfying the Hamilton-Jacobi equation:

du 1 [ou\’
—+=-|=—] =0 2.1
ot 2 <8m> 0 (2.1)
Assume that u € C*(]0,00) x R™) is a solution of (2.1). We define a characteristic of (2.1) is a solution of
dx Ou
) = 9 4.2(e)). 2(0) = . (2.2

(a) Assuming that x(t) solves (2.1), use the chain rule to compute ‘C%”

(b) Differentiate (2.1) with respect to x and then restrict the result to (t,x(t)), where x(t) solves (2.2). Conclude

from (a) that to
d?z

a2t
Hence, for some constant vy (which depends on the characteristic),

x(t) = xo + vot.

(¢) Show that the Lagrangian derivative of u along z(t) satisfies

imply that

1
u(t, zo + vot) = u(0,x0) + ivgt.

(d) Use this approach to find the solution u(t,x) under the initial condition

u(0, ) = 2.

Solution. (a) By direct calculation, we have
d?z  d [Ou 0%u 0%
TRy (%(t’x(t))> = m(tax(t)) ‘*‘33(15)@(15795@))7

in short we actually have

d%z 8%u Ou 0%*u

a2 " owot T or 0at

(b) Differentiate (2.1), we have
O?u  Ou 0%u
_—t . — = 07
otdx Oz Ox?
trivially, from (a) we have
d2zx
de?
Then we solve this ODE with initial condition z(0) = x¢, there exists a constant vy such that x(t) = z¢ + vot.
(c) By direct calculation, we have

Du(t,z(t) _ Ou  Ou .. Qu (0u>2 1 <8u>2 _ 1(3.:@))2 _ %1}2

Di ot o W%t \a) T3l

=0.

here we use the identity g—g(t, x(t)) = @(t) = vo, so from this we know that u(t,z(t)) = C' + $vdt for some constant

C, then let t = 0, we have

1
u(t, zo + vot) = u(0,x0) + ivgt.




(d) Since u(0,7) = 22, then we have u(0,z¢) = x3, then since z = x¢ + vot, i.e., vo = =% on the other hand,
note that $%(0,z) = 2z, so we have 9%(0,20) = 2z, note that from (2.2), we have

ou ou
— #(0) = 2= (0,2(0)) = =—(0,0) = 2
vo = Z( ) 317( 733( )) ax( =$0) Lo,
so we have vy = 2z¢ and z¢ = 15, so from the equation we get from (c), i.e., u(t,zo + vot) = 22 + %v%t, then
2
x
t7 = b
ut:r) =g
is the solution we want to find for the initial condition u(0,z) = 2. O

3 Problem 4.4

Problem. Consider a string of length £ with progagation speed ¢ = 1, i.e., we consider a wave equation as

2 2
% - % = f(t,x) := cos(wt) sin(wgx), (3.1)
with w > 0 and wy := %’r and the intial condition
0
u(0,2) =0, So(0,2) =0, (3.2)

then find the solution u(t, z) including both cases w # wy, and w = wy.

Solution. By Duhamel’s method, we can direct get the expression of u(t,z) by

z+t—s
/ / cos(ws) sin(wyy)dyds

t+s
= 2— [cos(wk(a: —t+s5)) —cos(wo(x +t — s))] cos(ws)ds (3.3)
Wi 0
= sin(wgx) sin(wg (t — s)) cos(ws)ds.

Now from the equation above, we have for w # wy we obtain

u(t,x) = m[cos(wt) — cos(wyt)],

and if w = wy, then we obtain

4
u(t,x) = Yoor sin(wgx) sin(wgt),

now we finish this problem. O

4 Problem 4.5

Problem. The telegraph equation is a variant of the wave equation that describes the propagation of electrical signals

in a one-dimensional cable: o2 o 82
u u
b =0, 4.1
o e T T (4.1)
where u(t, x) is the line voltage, c is the propagation speed, and a,b > 0 are determined by electrical properties of the
cable (resistance, inductance, etc.). Show that the substitution

u(t, z) = e~ 2uw(t, x) (4.2)

reduces the telegraph equation to an ordinary wave equation for w, provided a and b satisfy a certain condition. Find
the general solution in this case.



Solution. By direct calculation, we have

9 —at/2 _ ,—at/2 Ow a —at/2

g (e w(hm)) =e E(t,x) — 3¢ w(t, x),
and o2 e p )

a a w Cat/2 OW a® _,
5 (e t/zw(t,x)) =e t/278t2 (t,z) — ae t/z—at (t,z) + 7° H20(t, ),
so now we from (4.1) and have
L @Pw a? Caty2 0Pw
e t/278t2 + e t/2 (b vy > w — e t/278m2 =0, (4.3)

so when 4b = a2, then we have the ordinary wave equation from (4.3),

Pw  ,0%w
— — == =0,. 4.4

a2~ ¢ 922 ' (44)
So in general, we can transfer a telegrah equation (4.1) with 4b = a? and initial conditions

du

ot (0,z) = h(x), (4.5)

u(0,z) = g(),

to the ordinary wave equation (4.4) with initial conditions

~ ow ~ a
w(0,2) =g(z) = g(z), —5-(0,2) = h(z) = h(z) + 59(z), (4.6)
so now from d’Alembert’s formula, we have
1 1 x+ct .
w(t,z) =[5z + ct) + Gl — ct)] + / h(r)dr, (47)
2c 2¢ Jo_ot

then we have the general solution of (4.1) with initial conditions (4.5) is

e—at/2 e—at/2 z+ct
u(t,z) =
x

5o [9(@ +ct) + g(w — ct)] + —

—ct

then we finish this problem. O

5 Problem 4.9

Problem. The Klein-Gordon equation in Rn is a variant of the wave equation that appears in relativistic quantum
mechanics,

2
% — Au+m?u =0, (5.1)
where m is the mass of a particle.

(a) Find a formula for w = w(k, m) under which this equation have solutions of the form
u(t, x) = e'F@—wt) (5.2)
where w € R and k € R™ are constants.

(b) Show that we can define a conserved energy & for this equation by adding a term proportional to u2 to the

integrand n
éa( ) = 71 / u ’ |V |2 d (5 3)



Solution. (a) Suppose u satisfies (5.1) and (5.2), then by direct calculation, we have

@ — MZei(km—wt)’ Au = _|k‘2€i(k‘w—wt),

ot?

so we have (5.1) is equivalent to 4
(UJ2 _ ‘k|2 + m2)ez(k~w—wt) =0,

since |e'F®=t)| = 1 5o we have

’w2:|k|2—m2‘

is the formula we want to find.
(b) Define

2 2
e =g [ |(5) 1wt o an
Rn

and we assume u is compactly supported then we have

d . ou [ 9*u 9 B
dté"(u)—/Rn[at(aﬂ—Au—l—mu dx =0,

thus we know that the engery &”(u) is conserved and as desired.

O

Remark 5.1. In my solution, I assume u is compactly supported, because I cannot prove that lim|z| o u(t,z) =0,

so I just do the same thing as Prof. Hu has done in dealing with Schrodinger’s equation.
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