2023 Fall Partial Differential Equations Exercise 1: WAVE EQUATIONS

2021 Chern Class 2113696 [Kai Zhu](https://mmkaymath.github.io/KaiZhu.github.io/)

September 15, 2023

Abstract

I select five problems to solve from [\[1](#page-4-0)].

Contents

1 Problem 3.3

Problem. *Assume that u satisfies the linear conservation equation*

$$
\frac{\partial u}{\partial t} + 2t \frac{\partial u}{\partial x} = 0,\t\t(1.1)
$$

for $t \in \mathbb{R}$ *and* $x \in [0, 1]$ *, suppose the boundary conditions are given by*

$$
u(t,0) = h_0(t), \quad u(t,1) = h_1(t).
$$

Find a relation between h_0 *and* h_1 *.*

Solution. Firstly, from the ODE $\frac{dx(t)}{dt} = 2t$, we can solve that $x(t) = t^2 + x_0$ for some constant x_0 , then we have

$$
\frac{Du(t, x(t))}{Dt} \equiv 0, \quad \Longrightarrow u(t, x(t)) = C
$$

for some another constant *C* depends on x_0 , now from the initial conditions, we have $u(t, t^2 + x_0) = C(x_0)$, then when $t^2 + x_0 = 0$, we have $h_0(t) = u(t, 0) = C(x_0) = C(-t^2)$, similarly, we have $h_1(t) = u(t, 1) = C(x_0) = C(1 - t^2)$, so if ([1.1](#page-0-1)) has a solution *u*, then for each $t_0, t_1 \in \mathbb{R}$, if $-t_0^2 = 1 - t_1^2$, then we have $h_0(t_0) = h_1(t_1)$, in summary

$$
h_0(t_0) = h_1(t_1)
$$
, if $t_1^2 - t_0^2 = 1$,

is a relation that h_0 and h_1 should satisfy.

 \Box

2 Problem 3.7

Problem. *In the mid-19th century, William Hamilton and Carl Jacobi developed a formulation of classical mechanics based on ideas from geometric optics. In this approach the dynamics of a free particle in* R *are described by a generating function u*(*t, x*) *satisfying the Hamilton-Jacobi equation:*

$$
\frac{\partial u}{\partial t} + \frac{1}{2} \left(\frac{\partial u}{\partial x} \right)^2 = 0. \tag{2.1}
$$

Assume that $u \in C^1([0,\infty) \times \mathbb{R}^n)$ *is a solution of* [\(2.1](#page-1-1))*. We define a characteristic of* ([2.1\)](#page-1-1) *is a solution of*

$$
\frac{dx}{dt}(t) = \frac{\partial u}{\partial x}(t, x(t)), \quad x(0) = x_0.
$$
\n(2.2)

- (a) Assuming that $x(t)$ solves ([2.1](#page-1-1)), use the chain rule to compute $\frac{d^2x}{dt^2}$.
- (b) *Differentiate* [\(2.1](#page-1-1)) *with respect to x* and then restrict the result to $(t, x(t))$ *, where* $x(t)$ *solves* ([2.2](#page-1-2))*. Conclude from (a) that to*

$$
\frac{\mathrm{d}^2x}{\mathrm{d}^2t} = 0.
$$

Hence, for some constant v_0 *(which depends on the characteristic),*

$$
x(t) = x_0 + v_0 t.
$$

(c) Show that the Lagrangian derivative of u along x(*t*) *satisfies*

$$
\frac{Du}{Dt} = \frac{1}{2}v_0^2
$$

,

imply that

$$
u(t, x_0 + v_0 t) = u(0, x_0) + \frac{1}{2}v_0^2 t.
$$

(d) Use this approach to find the solution u(*t, x*) *under the initial condition*

$$
u(0,x) = x^2.
$$

Solution. (a) By direct calculation, we have

$$
\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial u}{\partial x}(t,x(t))\right) = \frac{\partial^2u}{\partial x\partial t}(t,x(t)) + \dot{x}(t)\frac{\partial^2u}{\partial x^2}(t,x(t)),
$$

in short we actually have

$$
\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = \frac{\partial^2u}{\partial x\partial t} + \frac{\partial u}{\partial x} \cdot \frac{\partial^2u}{\partial x^2}.
$$

(b) Differentiate ([2.1\)](#page-1-1), we have

$$
\frac{\partial^2 u}{\partial t \partial x} + \frac{\partial u}{\partial x} \cdot \frac{\partial^2 u}{\partial x^2} = 0,
$$

trivially, from (a) we have

$$
\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = 0.
$$

Then we solve this ODE with initial condition $x(0) = x_0$, there exists a constant v_0 such that $x(t) = x_0 + v_0 t$. (c) By direct calculation, we have

$$
\frac{Du(t, x(t))}{Dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \cdot \dot{x}(t) = \frac{\partial u}{\partial t} + \left(\frac{\partial u}{\partial x}\right)^2 = \frac{1}{2}\left(\frac{\partial u}{\partial x}\right)^2 = \frac{1}{2}(\dot{x}(t))^2 = \frac{1}{2}v_0^2,
$$

here we use the identity $\frac{\partial u}{\partial x}(t, x(t)) = \dot{x}(t) = v_0$, so from this we know that $u(t, x(t)) = C + \frac{1}{2}v_0^2t$ for some constant *C*, then let $t = 0$, we have

$$
u(t, x_0 + v_0 t) = u(0, x_0) + \frac{1}{2}v_0^2 t.
$$

(d) Since $u(0, x) = x^2$, then we have $u(0, x_0) = x_0^2$, then since $x = x_0 + v_0 t$, i.e., $v_0 = \frac{x - x_0}{t}$, on the other hand, note that $\frac{\partial u}{\partial x}(0, x) = 2x$, so we have $\frac{\partial u}{\partial x}(0, x_0) = 2x_0$, note that from [\(2.2\)](#page-1-2), we have

$$
v_0 = \dot{x}(0) = \frac{\partial u}{\partial x}(0, x(0)) = \frac{\partial u}{\partial x}(0, x_0) = 2x_0,
$$

so we have $v_0 = 2x_0$ and $x_0 = \frac{x}{1+2t}$, so from the equation we get from (c), i.e., $u(t, x_0 + v_0 t) = x_0^2 + \frac{1}{2}v_0^2 t$, then

$$
u(t,x) = \frac{x^2}{1+2t},
$$

is the solution we want to find for the initial condition $u(0, x) = x^2$.

3 Problem 4.4

Problem. *Consider a string of length ℓ with progagation speed c* = 1*, i.e., we consider a wave equation as*

$$
\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = f(t, x) := \cos(\omega t) \sin(\omega_k x),\tag{3.1}
$$

with $\omega > 0$ *and* $\omega_k := \frac{k\pi}{\ell}$ *and the intial condition*

$$
u(0,x) = 0, \quad \frac{\partial u}{\partial t}(0,x) = 0,
$$
\n(3.2)

then find the solution $u(t, x)$ *including both cases* $\omega \neq \omega_k$ *and* $\omega = \omega_k$ *.*

Solution. By Duhamel's method, we can direct get the expression of $u(t, x)$ by

$$
u(t,x) = \frac{1}{2} \int_0^t \int_{x-t+s}^{x+t-s} \cos(\omega s) \sin(\omega_k y) dy ds
$$

\n
$$
= \frac{1}{2\omega_k} \int_0^t [\cos(\omega_k (x-t+s)) - \cos(\omega_0 (x+t-s))] \cos(\omega s) ds
$$

\n
$$
= \frac{1}{\omega_k} \int_0^t \sin(\omega_k x) \sin(\omega_k (t-s)) \cos(\omega s) ds.
$$
\n(3.3)

Now from the equation above, we have for $\omega \neq \omega_k$ we obtain

$$
u(t,x) = \frac{\sin(\omega_k x)}{\omega_k^2 - \omega^2} [\cos(\omega t) - \cos(\omega_k t)],
$$

and if $\omega = \omega_k$ then we obtain

$$
u(t,x) = \frac{t}{2\omega_k} \sin(\omega_k x) \sin(\omega_k t),
$$

now we finish this problem.

4 Problem 4.5

Problem. *The telegraph equation is a variant of the wave equation that describes the propagation of electrical signals in a one-dimensional cable:*

$$
\frac{\partial^2 u}{\partial t^2} + a \frac{\partial u}{\partial t} + bu - c^2 \frac{\partial^2 u}{\partial x^2} = 0,
$$
\n(4.1)

where $u(t, x)$ *is the line voltage, c is the propagation speed, and* $a, b > 0$ *are determined by electrical properties of the cable (resistance, inductance, etc.). Show that the substitution*

$$
u(t,x) = e^{-at/2}w(t,x)
$$
\n(4.2)

reduces the telegraph equation to an ordinary wave equation for w, provided a and b satisfy a certain condition. Find the general solution in this case.

 \Box

 \Box

Solution. By direct calculation, we have

$$
\frac{\partial}{\partial t} \left(e^{-at/2} w(t, x) \right) = e^{-at/2} \frac{\partial w}{\partial t}(t, x) - \frac{a}{2} e^{-at/2} w(t, x),
$$

and

$$
\frac{\partial^2}{\partial t^2} \left(e^{-at/2} w(t, x) \right) = e^{-at/2} \frac{\partial^2 w}{\partial t^2}(t, x) - a e^{-at/2} \frac{\partial w}{\partial t}(t, x) + \frac{a^2}{4} e^{-at/2} w(t, x),
$$

so now we from [\(4.1\)](#page-2-2) and have

$$
e^{-at/2}\frac{\partial^2 w}{\partial t^2} + e^{-at/2} \left(b - \frac{a^2}{4}\right)w - c^2 e^{-at/2}\frac{\partial^2 w}{\partial x^2} = 0,
$$
\n(4.3)

so when $4b = a^2$, then we have the ordinary wave equation from (4.3) (4.3) (4.3) ,

$$
\frac{\partial^2 w}{\partial t^2} - c^2 \frac{\partial^2 w}{\partial x^2} = 0,\tag{4.4}
$$

So in general, we can transfer a telegrah equation [\(4.1](#page-2-2)) with $4b = a^2$ and initial conditions

$$
u(0,x) = g(x), \quad \frac{\partial u}{\partial t}(0,x) = h(x), \tag{4.5}
$$

to the ordinary wave equation [\(4.4](#page-3-2)) with initial conditions

$$
w(0,x) = \tilde{g}(x) = g(x), \quad \frac{\partial w}{\partial t}(0,x) = \tilde{h}(x) = h(x) + \frac{a}{2}g(x), \tag{4.6}
$$

so now from d'Alembert's formula, we have

$$
w(t,x) = \frac{1}{2c} [\tilde{g}(x+ct) + \tilde{g}(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \tilde{h}(\tau) d\tau,
$$
\n(4.7)

then we have the general solution of (4.1) with initial conditions (4.5) is

$$
u(t,x) = \frac{e^{-at/2}}{2c} [g(x+ct) + g(x-ct)] + \frac{e^{-at/2}}{2c} \int_{x-ct}^{x+ct} (h(\tau) + \frac{a}{2} g(\tau)) d\tau,
$$

then we finish this problem.

5 Problem 4.9

Problem. *The Klein-Gordon equation in Rn is a variant of the wave equation that appears in relativistic quantum mechanics,*

$$
\frac{\partial^2 u}{\partial t^2} - \Delta u + m^2 u = 0,\tag{5.1}
$$

where m is the mass of a particle.

(a) Find a formula for $\omega = \omega(\mathbf{k}, m)$ under which this equation have solutions of the form

$$
u(t, \mathbf{x}) = e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)},\tag{5.2}
$$

where $\omega \in \mathbb{R}$ *and* $\mathbf{k} \in \mathbb{R}^n$ *are constants.*

(b) Show that we can define a conserved energy E for this equation by adding a term proportional to u2 to the integrand in

$$
\mathcal{E}(u) = \frac{1}{2} \int_{\Omega} \left[\left(\frac{\partial u}{\partial t} \right)^2 + |\nabla u|^2 \right] dx.
$$
 (5.3)

Solution. (a) Suppose *u* satisfies [\(5.1](#page-3-4)) and ([5.2](#page-3-5)), then by direct calculation, we have

$$
\frac{\partial^2 u}{\partial t^2} = \omega^2 e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}, \quad \Delta u = -|\mathbf{k}|^2 e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}, \tag{5.4}
$$

so we have ([5.1](#page-3-4)) is equivalent to

$$
(\omega^2 - |\mathbf{k}|^2 + m^2)e^{i(\mathbf{k}\cdot\mathbf{x} - \omega t)} = 0,
$$
\n(5.5)

since $|e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}|=1$, so we have

$$
\omega^2 = |\mathbf{k}|^2 - m^2
$$

is the formula we want to find.

(b) Define

$$
\mathscr{E}'(u) = \frac{1}{2} \int_{\mathbb{R}^n} \left[\left(\frac{\partial u}{\partial t} \right)^2 + |\nabla u|^2 + \frac{m^2}{2} u^2 \right] dx, \tag{5.6}
$$

and we assume *u* is compactly supported then we have

$$
\frac{\mathrm{d}}{\mathrm{d}t} \mathscr{E}'(u) = \int_{\mathbb{R}^n} \left[\frac{\partial u}{\partial t} \left(\frac{\partial^2 u}{\partial t^2} - \Delta u + m^2 u \right) \right] \mathrm{d}x = 0,
$$

thus we know that the engery $\mathscr{E}'(u)$ is conserved and as desired.

 \Box

Remark 5.1. *In my solution, I assume <i>u is compactly supported, because I cannot prove that* $\lim_{|\mathbf{x}| \to \infty} u(t, \mathbf{x}) = 0$, *so I just do the same thing as Prof. Hu has done in dealing with Schrödinger's equation.*

References

[1] D. Borthwick, *Introduction to partial differential equations*. Springer, 2017.