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Abstract

I select five problems to solve from [1].
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1 Problem 3.3
Problem. Assume that u satisfies the linear conservation equation

∂u

∂t
+ 2t

∂u

∂x
= 0, (1.1)

for t ∈ R and x ∈ [0, 1], suppose the boundary conditions are given by

u(t, 0) = h0(t), u(t, 1) = h1(t).

Find a relation between h0 and h1.

Solution. Firstly, from the ODE dx(t)
dt = 2t, we can solve that x(t) = t2 + x0 for some constant x0, then we have

Du(t, x(t))

Dt
≡ 0, =⇒ u(t, x(t)) = C

for some another constant C depends on x0, now from the initial conditions, we have u(t, t2 + x0) = C(x0), then
when t2 + x0 = 0, we have h0(t) = u(t, 0) = C(x0) = C(−t2), similarly, we have h1(t) = u(t, 1) = C(x0) = C(1− t2),
so if (1.1) has a solution u, then for each t0, t1 ∈ R, if −t20 = 1− t21, then we have h0(t0) = h1(t1), in summary

h0(t0) = h1(t1), if t21 − t20 = 1,

is a relation that h0 and h1 should satisfy.
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2 Problem 3.7
Problem. In the mid-19th century, William Hamilton and Carl Jacobi developed a formulation of classical mechanics
based on ideas from geometric optics. In this approach the dynamics of a free particle in R are described by a generating
function u(t, x) satisfying the Hamilton-Jacobi equation:

∂u

∂t
+

1

2

(
∂u

∂x

)2

= 0. (2.1)

Assume that u ∈ C1([0,∞)× Rn) is a solution of (2.1). We define a characteristic of (2.1) is a solution of

dx

dt
(t) =

∂u

∂x
(t, x(t)), x(0) = x0. (2.2)

(a) Assuming that x(t) solves (2.1), use the chain rule to compute d2x
dt2 .

(b) Differentiate (2.1) with respect to x and then restrict the result to (t, x(t)), where x(t) solves (2.2). Conclude
from (a) that to

d2x

d2t
= 0.

Hence, for some constant v0 (which depends on the characteristic),

x(t) = x0 + v0t.

(c) Show that the Lagrangian derivative of u along x(t) satisfies

Du

Dt
=

1

2
v20 ,

imply that
u(t, x0 + v0t) = u(0, x0) +

1

2
v20t.

(d) Use this approach to find the solution u(t, x) under the initial condition

u(0, x) = x2.

Solution. (a) By direct calculation, we have

d2x

dt2
=

d

dt

(
∂u

∂x
(t, x(t))

)
=

∂2u

∂x∂t
(t, x(t)) + ẋ(t)

∂2u

∂x2
(t, x(t)),

in short we actually have
d2x

dt2
=

∂2u

∂x∂t
+

∂u

∂x
· ∂

2u

∂x2
.

(b) Differentiate (2.1), we have
∂2u

∂t∂x
+

∂u

∂x
· ∂

2u

∂x2
= 0,

trivially, from (a) we have
d2x

dt2
= 0.

Then we solve this ODE with initial condition x(0) = x0, there exists a constant v0 such that x(t) = x0 + v0t.
(c) By direct calculation, we have

Du(t, x(t))

Dt
=

∂u

∂t
+

∂u

∂x
· ẋ(t) = ∂u

∂t
+

(
∂u

∂x

)2

=
1

2

(
∂u

∂x

)2

=
1

2
(ẋ(t))2 =

1

2
v20 ,

here we use the identity ∂u
∂x (t, x(t)) = ẋ(t) = v0, so from this we know that u(t, x(t)) = C + 1

2v
2
0t for some constant

C, then let t = 0, we have

u(t, x0 + v0t) = u(0, x0) +
1

2
v20t.
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(d) Since u(0, x) = x2, then we have u(0, x0) = x2
0, then since x = x0 + v0t, i.e., v0 = x−x0

t , on the other hand,
note that ∂u

∂x (0, x) = 2x, so we have ∂u
∂x (0, x0) = 2x0, note that from (2.2), we have

v0 = ẋ(0) =
∂u

∂x
(0, x(0)) =

∂u

∂x
(0, x0) = 2x0,

so we have v0 = 2x0 and x0 = x
1+2t , so from the equation we get from (c), i.e., u(t, x0 + v0t) = x2

0 +
1
2v

2
0t, then

u(t, x) =
x2

1 + 2t
,

is the solution we want to find for the initial condition u(0, x) = x2.

3 Problem 4.4
Problem. Consider a string of length ℓ with progagation speed c = 1, i.e., we consider a wave equation as

∂2u

∂t2
− ∂2u

∂x2
= f(t, x) := cos(ωt) sin(ωkx), (3.1)

with ω > 0 and ωk := kπ
ℓ and the intial condition

u(0, x) = 0,
∂u

∂t
(0, x) = 0, (3.2)

then find the solution u(t, x) including both cases ω ̸= ωk and ω = ωk.

Solution. By Duhamel’s method, we can direct get the expression of u(t, x) by

u(t, x) =
1

2

∫ t

0

∫ x+t−s

x−t+s

cos(ωs) sin(ωky)dyds

=
1

2ωk

∫ t

0

[cos(ωk(x− t+ s))− cos(ω0(x+ t− s))] cos(ωs)ds

=
1

ωk

∫ t

0

sin(ωkx) sin(ωk(t− s)) cos(ωs)ds.

(3.3)

Now from the equation above, we have for ω ̸= ωk we obtain

u(t, x) =
sin(ωkx)

ω2
k − ω2

[cos(ωt)− cos(ωkt)],

and if ω = ωk then we obtain

u(t, x) =
t

2ωk
sin(ωkx) sin(ωkt),

now we finish this problem.

4 Problem 4.5
Problem. The telegraph equation is a variant of the wave equation that describes the propagation of electrical signals
in a one-dimensional cable:

∂2u

∂t2
+ a

∂u

∂t
+ bu− c2

∂2u

∂x2
= 0, (4.1)

where u(t, x) is the line voltage, c is the propagation speed, and a, b > 0 are determined by electrical properties of the
cable (resistance, inductance, etc.). Show that the substitution

u(t, x) = e−at/2w(t, x) (4.2)

reduces the telegraph equation to an ordinary wave equation for w, provided a and b satisfy a certain condition. Find
the general solution in this case.
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Solution. By direct calculation, we have

∂

∂t

(
e−at/2w(t, x)

)
= e−at/2 ∂w

∂t
(t, x)− a

2
e−at/2w(t, x),

and
∂2

∂t2

(
e−at/2w(t, x)

)
= e−at/2 ∂

2w

∂t2
(t, x)− ae−at/2 ∂w

∂t
(t, x) +

a2

4
e−at/2w(t, x),

so now we from (4.1) and have

e−at/2 ∂
2w

∂t2
+ e−at/2

(
b− a2

4

)
w − c2e−at/2 ∂

2w

∂x2
= 0, (4.3)

so when 4b = a2, then we have the ordinary wave equation from (4.3),

∂2w

∂t2
− c2

∂2w

∂x2
= 0, . (4.4)

So in general, we can transfer a telegrah equation (4.1) with 4b = a2 and initial conditions

u(0, x) = g(x),
∂u

∂t
(0, x) = h(x), (4.5)

to the ordinary wave equation (4.4) with initial conditions

w(0, x) = g̃(x) = g(x),
∂w

∂t
(0, x) = h̃(x) = h(x) +

a

2
g(x), (4.6)

so now from d’Alembert’s formula, we have

w(t, x) =
1

2c
[g̃(x+ ct) + g̃(x− ct)] +

1

2c

∫ x+ct

x−ct

h̃(τ)dτ, (4.7)

then we have the general solution of (4.1) with initial conditions (4.5) is

u(t, x) =
e−at/2

2c
[g(x+ ct) + g(x− ct)] +

e−at/2

2c

∫ x+ct

x−ct

(
h(τ) +

a

2
g(τ)

)
dτ,

then we finish this problem.

5 Problem 4.9
Problem. The Klein-Gordon equation in Rn is a variant of the wave equation that appears in relativistic quantum
mechanics,

∂2u

∂t2
−∆u+m2u = 0, (5.1)

where m is the mass of a particle.

(a) Find a formula for ω = ω(k,m) under which this equation have solutions of the form

u(t,x) = ei(k·x−ωt), (5.2)

where ω ∈ R and k ∈ Rn are constants.

(b) Show that we can define a conserved energy E for this equation by adding a term proportional to u2 to the
integrand in

E (u) =
1

2

∫
Ω

[(
∂u

∂t

)2

+ |∇u|2
]
dx. (5.3)
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Solution. (a) Suppose u satisfies (5.1) and (5.2), then by direct calculation, we have

∂2u

∂t2
= ω2ei(k·x−ωt), ∆u = −|k|2ei(k·x−ωt), (5.4)

so we have (5.1) is equivalent to
(ω2 − |k|2 +m2)ei(k·x−ωt) = 0, (5.5)

since |ei(k·x−ωt)| = 1, so we have
ω2 = |k|2 −m2

is the formula we want to find.
(b) Define

E ′(u) =
1

2

∫
Rn

[(
∂u

∂t

)2

+ |∇u|2 + m2

2
u2

]
dx, (5.6)

and we assume u is compactly supported then we have

d

dt
E ′(u) =

∫
Rn

[
∂u

∂t

(
∂2u

∂t2
−∆u+m2u

)]
dx = 0,

thus we know that the engery E ′(u) is conserved and as desired.

Remark 5.1. In my solution, I assume u is compactly supported, because I cannot prove that lim|x|→∞ u(t,x) = 0,
so I just do the same thing as Prof. Hu has done in dealing with Schrödinger’s equation.
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