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Preliminaries

1.1 Notes

Let f = (f',---, f™):C"™ — C™, then f is holomorphic, if

O R i Vi<i<m,1<j<n,
oxrl oyl Oyl Ox?

where f! = u’ + /—1v%, we can also denote it as O f = 0.

Recall Cauchy integral formula for C

Suppose €2 C C is a bounded domain, 92 piecewise C'! and is a Jordan curve, then let f € C(Q),

and for any 2 € €2, we have

f(z0) = 27{\1/* (/Qz—zod +//QZ—ZOd /\d2>’

then we have two special cases

1. If f is holomorphic, then we have

Sz} = QTFF/QZ—ZO

2. If f € C}(£2) with compact support contained in €2, then

f(20) = 27TF//QZ_ZOdz/\dz.

Proof. One can transfer it to the real version then use Grenn formula.

Now we generalize it to the multi-complex variable :

Suppose 2 C C", let f € O(C™), for any & € (2, let the polydisk be

]D)T‘(é.) o= {(Zla' o >Zn) eC": |ZZ _51’ < Ti}a
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where ¢ = (€. &) andr = (rl,---  r"),then for D,.(&) C Q, we have

L f(zl"”’zn) ooodan
f(g) (271-\/7) /|zl £l|=r! /Z"§”|=7‘" (zl — 61) . (Zn _ én)d dz".

Then compare to the single value function ,we have Taylor expansion:

Forany f € O(Q), £ € , then there exists D,.(£) C €2, such that

f(zlv"' ’Zn) = Z Ca(z_é.)a7 (Z_é)a:H(zi_gi)aia

aeN? =1

where o = (a1, - - - , v, ) and we also have

1 f(Zla 7Zn) 1
o ot
(27T /71)71 [T |2n—gn|=pn (Zl _ 51)&14—1 a0 (Zn _ gn)an-&-l

More precisely, we have

1 am—‘:—---anf

Ca = (a1)) - (o))~ O(zL)a - 9(zm)on

Now we see something different

Let Q@ C C™ be a domain, and n > 2, K C Q is compact, and 2 \ K is connected, let f €
O(Q\ K), then there exists f € O(€) such that f = fon Q\ K.

1
when n = 1, the theorem dosen’t hold, since f(z) = — on C — {0} is a counterexample.
z

Proof. The main idea is to solve 0 equation.

Firstly, we use cut off function to smoothly extend f, suppose K C Uy C Us C €, then let ¢ €
C>®(C"),and ¢ =0o0n Uy, and ¢ = 1 on C™ \ Us, now we have ¢ f € C>*(Q,C).

Goal : Find g € C§°(Q,C), such that d(g — pf) = 0, beacuse given such g, let f =of —g,
we know that fis holomorphic, and it equals to f on the boundary of €2, then from the uniqueness of
holomorphic functions, note Q \ K is connected, so f= f

f = ( f) € C§°(C™,C), then we have Ou _ us

ozk — 9zt

So we now construct g, let u; =

all 4, k, then we can let

n 1.2 . n
g(z! // ua (T, 2%, oz )dT/\dT:// wu(r+2,2% 2 g
T— 2 C T

. . 0 .
Now to check our goal, it suffices to verify a—i = uyg and g has compact support, we omit them. &
z
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Definition 1.1.2: Meromorphic Function

A function f on €2 is called meromorphic if there exists open cover i = {U; } of €2, such that

h;
f==—, hig €O,

%

and we denote the all meromorphic functions to be M(£2).
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Complex Manifolds

2.1 Complex Manifolds

A complex manifold )/ is a differentiable manifold admitting an open cover {U,, } and coordinate

maps @, : Uy, — C" such that
* (C) @a : Ua = ¢a(Ua) is a homeomorphism;
* (C2) whenever U,NUp # @, we have ¢, ogogl is a biholomorphic map from (U, NUp)

to (pa(Ua N U@).

From Daniel we know that biholomorphic is equivalent to bijective and holomorphic.

1. Amap f : M — C from a complex manifold is called a holomorphic function, if f ogpi_l S

O(p;i(U;)), for all i € I, in this case, we write f € O(M);

2. If M, N are both complex manifolds of dimension n and m respectively, a map F' : M —
N is called holomorphic if for all coordinate charts (U, ) of M and (V) of N , the map
1o F o1 isaholomorphic map on p(UNF~1(V)) C C" whenever UNF~1(V) # @.
A holomorphic map with a holomorphic inverse is called biholomorphic.

We will define ”O” the holomorphic function sheaf later.

Example 2.1.1 (Some special complex manifolds).

1. Open subsets of C™ are complex manifolds,

2. Let{e1, - e} be any fixed R—basis of C" , and let
.= {m161 —+ -+ m2n62n|mi S Z}

be a lattice of rank 2n. Then we can define the quotient space C" /T, it is a compact Haisdorff
space equipped with quotient topology. There is a natural complex manifold structure induced

from the quotient map on C" /T, we call this complex mainfold a complex torus;

5
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3. Let P € C[z,w] be a polynomial of degree d. Define

C :={(z,w)|P(z,w) = 0}.

oP OP
We call it an affine plane algebraic curve, now assume P is irreducible and 5 9w have no
z  Ow

common zeros on C, i.e., V P nowhere vanishes, and then C'is a natural complex manifold, more

precisely, a non-compact Riemann surface.

Proof. The coordinates can be choosen in the following way: WLOG if gi(zo, wp) # 0, then we
can apply the holomorphic version of implicit function theorem to find a neighborhood B := B(zp, ¢) x
B(wyg, 0), and a holomorphic function ¢g(z) such that U := C N B = {(z,w)|z € B(z0,¢),w = g(2)},
we choose ¢ : U — C to be p(z,w) = z, since w = g¢(z) so it is really a homeomorphism, and
furthermore, if ((;]:(zo, wp) # 0, we use w as local coordinate.

Now we consider the map on the intersection, if (29, wg) € U; N U; with coordinate ¢;(z, w) = z,
@;(z,w) = w, then suppose from implicit theorem we have z = g(w) and w = h(z) on U; N U;
then ; o goj_l(w) = g(w), since g o h and h o g both identity, so g is bijective and holomorphic then

biholomorphic. L)

More about Complex Tori

Let us consider the one-dimensional a bit more in detail. Suppose wy,ws € C*, and w; /we ¢ R, we

denote I to be the discrete subgroup of C generated by w; and wo,

‘F = w1Z + wiZ = {mw + nwa|m,n € Z} ‘

So we have C/I" = C/ ~, where z ~ w if and only Im,n € Z such that z = w + mw; + nws. We
use [z] to represent the equivalence class of z, and 7 is the quotient map, now we show in detailed that
C/T is a Riemann surface , i.e., a 1-complex manifold:

Firstly, we denote

6= inf  |mwy + nwa| > 0,
(m,n)#(0,0)

then for arbitrary p € C/T', let z, € 7~ *(p), and
Wy ={w e Cllw - 2| <d/2}, U,=mn(W,),
so by the definition of quotient map, and W\Wp is a homeomorphism , U, is open in C/T', so let

ep:Up—=W,CC

pr (7lw,) " (p),
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so we have {(Uy, @)} is an atlas, since ¢, 0 ¢, ! (z) = z + w for some w € I is holomorphic, then we
know that C/I is really a Riemann surface.
Now a natural question is Are those complex tori holomorphic isomorphic ? If not, can we give them

a classification ? Before we answer these questions, we offer some basic propositions:

1. the quotient projection 7 : C — C/T'is a ‘ holomorphic covering mad ;

2. For arbitrary two tori C/I'; and C/T"y, they are ‘ diffeomorphism ‘;

3. Suppose f : C/T'; — C/TI'y is a continuous(holomorphic) map, and f([0]) = [0], then
there exists unique continuous(holomorphic) map f : C — C, such that f(0) = 0, and

satisfies the following diagram:

c—' ,c

mi J’Tl'z

C/Fl L) C/FQ

Proof. For 3, one can first lift f to a map from C/T"; to C, then define ]7 &

1. For arbitrary p € C/T', there exists a holomorphic automorphism such that
fp : C/T = C/T,  fp(p) = [0];

2. Complex tori C/(wy,ws2), C/(1, w1 /we) and C/(1,ws/w;) are isomorphic.

Proof. (1) Fixed z, € 7~ 1(p), define f, : C/T' — C/T, f,([w]) := [w — 2], then f,(p) = fo([2p]) =
[0], and it is not hard to check that f,, is really a holomorphic automorphism.

(2) naturally condider f : C/(w1,w2) — C/(1,w1/we), f([z]) := [2/wa]. )

So from the theorem above, when we classify the complex tori, it sufficies to consider a special case ,
ie, ' = (1,7) and Im7 > 0. Suppose f : C/(1,7) — C/(1,7') is a biholomorphic, then from the
proposition above, we assume f([0]) = [0],and F' : C — Cistheliftof f, and then F is also holomorphic ,
and satisfies F'(0) = 0,7 o F = fom.

Now similarly, suppose G is the lift of f~1, so F o G and G o F are all the lift of identity, then from
the uniqueness of lifting, we know that F'o G =id, G o F =id . So F' and G are the biholomorphism

from C to C. Recall a improtant and basic result :
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If F' : C — C is biholomorphism, then F' is linear, i.e., F'(z) = az + b for some a,b € C.

So since F'(0) = 0, there exists v # 0, and F'(z) = = - z, then we know that the biholomorphic
f:C/(1,7) = C/(1,7') such as

f(l2]) = vzl, vzeC,

especially, we have

which implies that there exists a, b, ¢, d € Z such that
y=a-1+b-7,
yoT=c-14+d-7.
Now we write the formula above in the matrix form

1 a b 1
- = , a,be,del.
T c d T

Simarly, we consider f~!, then we obtain

1 a b 1
y71 = ., dv,d,deZ.
7! d d T
So we actually have
1 a b a v 1 a b a v
T c d d d T c d d d

where it comes from 1, 7 is linearly independent. Since a,b,c,d and o', , ¢, d’ are all integers, then we

a b
have det = #+1, and since Im7 > 0 and Im7’ > 0, so it is not hard to find ad — bc = 1. In
c d

short, we have the following classification theorem:

IfC/(1,7)and C/(1,7") are complex tori with Im7 > 0 and Im7’ > 0, then they are biholomor-

QAT ithad — be= 1.
c+ar

phism if and only if there exists a, b, ¢, d € Z such that 7/ =
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The Complex Projective Space

Let CP" denote the set of lines through the origin in C"*1, aline | € C"*! is determined by any

z # 0 € [, so we can write
CP" = {[2] #0 € C"+1}/z ~ Az, YAeC.

More precisely, we define an equivalence relation on C"*1\ {0}: (20, -+, 2n) ~ (wo, -+, wy)
iff 3A € C* such that w; = \z;, for all . The n—dimensional complex projective space CP" is
defined to be the space with quotient topology, it is compact and Hausdorff since it can be viewed

as a quotient space of sphere.

Now we choose holomorphic coordinate charts as follows: define U; := {[zq, - , 25| € CP"|z; #

0}, and define

2 Z z
(pr . UZ%(CH, (’Di([ZO,... 7Zﬂ]) = (0,... ’l’... 7’!L> GC?’L.

It is trivially a homeomorphism, now we check the compatibility, on U; N U; and ¢;(U; N U;) =

{(wy,- -+ ,wy) € C"|w; # 0}, so we have

_ wo ﬁ 1 w
(piospjl(wl?...’wn):so([wl’...’1’...7wn]):(w"...vll;j...’wv...’u;jL).
7 7 (2 7

It is easy to check that CP* is diffeomorphic to S2.

A closed subset N of a n—dimensional complex manifold M is called a (closed) complex sub-
manifold of dimension £, if for any p € N, we can find a compatible chart (U, ¢) of M such that
peU and‘cp(UﬂY) ={(z1,"-+ ,2n) € p(U) CC"2gy1 =--- = 2, = 0}

, one can check

that the restriction of such charts (we call them “adapted charts”) to /N makes N a complex man-

ifold and the inclusion N C M is a holomorphic map.

Any holomorphic function on a | compact connected‘ complex manifold should be a constant.

Proof. Recall Maximum Principle in chapter 1, i.¢, let 2 C C" be a domain, andif f € O(Q)NCY(Q),
then max | f| can not be achieved at an interior point unless f is a constant.
Q

Since M is compact, thus for the holomorphic function f : M — C, there exists K > 0, max lf] =

K, suppose My = {p € M||f(p)| = K}, thus M; is closed in M. Furthermore, for all p € Mj, con-
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sider a coordinate neighborhood (U, ¢) of p, then | f o ¢~} attains its maximum in ¢ ~!(U), thus from
maximum principle, we knows that f(U) = {f(p)}, thus M; is open in M. Note M is connected, and
M is an open and closed subset of M, then we know that My = M, i.e. f is a constant. &

From the theorem above, we have

There are no complex submanifolds of C™ of positive dimension.

Proof. suppose dim¢cM = k > 0, and M is a compact complex submanifols of C", then forall p =
(21, ,2n) € M C C™, and since the inclusion map ¢ : M < C" is holomorphic, then i, : M — C,
and p — 2 is a holomorphic function, now from the theorem above, we know that i, is a constant, then
i(M) is a point in C", with dimension 0, a contradiction. &
This corollary means that we can not hope there is something like Whitney embedding theorem
such that every complex manifold can be viewed as a submanifold of C"V, where N is sufficient large.
But fortunately, the complex projective space CP"™ can be the new target space to be embedded in.
Those non-compact complex manifolds with admit proper holomorphic embeddings into CV for

some large NV are precisely called Stein manifolds.

Projective Algebraic Manifolds

Let Fy,--- , F € Clzp, -, 2] be a set of ‘ irreducible homogeneous polynomials‘ of degrees
di,--- ,d respectively, then the set
V(P Fy) i ={z = (20, z)Fi(2) = -+ = Fi(2) = 0} [ 2 ~ A2
={lz] =l20,- -, zl|F1(2) = --- = Fi(2) = 0}

is well defined and is called a complex projective algebraic variety.
If we assume that V' (Fy,--- , Fy) is a complex submainfold of CP", then it will be called a

projective algebraic manifold or Hodge manifold.

Note that homogenous means that I;(A\z) = A% F(z) forall 1 <i < k.

oF OF
Example 2.1.2. Let F' be irreducible and homogeneous of degree d. If the only common zero ofa—, AR v
20 Zn

in C"*Lis (0,---,0), then V(F) is a complex submanifold of dimension n — 1.
For example, V(zg + -+ + 2% is a smmoth submanifold of CP", called the Fermat hypersurface
of degree d.
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Proof. We check this on Uy = {zp # 0}, then V' (F") NUj is the zero locus of the holomorphic function

e . . oF
F(1,z1, - ,2,) € O(Uyp), so from the implicit function theorem, it suffices to show that a—(l, z),
21

OF
. 8—(1, z) have no common zeros on V (F') N Uy, where z = (21, -+ , 2).
Zn
0

We argue it by contracdiction, if not, then there exists zo = (2, - - zo) and

1 n

P12 20) = 5 (120) = o5 —(1,20) =

By Euler’s theorem on homogeneous functions, we have

oF

OF OF
1,20) + z?a—Zl(l,zo) 4+ 4 2267(1,%) =d-F(1,z9) =0,

OF

This implies that 8—(1, 2z0) = 0, then (1, zg) is a common zero of VF in C**! different from (0, - - - , 0),
20

which is a contradiction. &

A generalization of submanifold is the following

A closed subset A of a complex manifold M is called an analytic subvariety, if it is locally the
common zeros of finitely many holomorphic functions, i.e. for all p € A, there is an open set

UC M and fi1, -, fr € O(U) such that
AﬂU:{Z€U|f1(2):--‘:fk(z):(]}.

An analytic subvariety A is called a hypersurface if it is locally the zero locus of a holomorphic

function. For example, the Fermat hypersurface.

Now we talk about the relation between submanifolds and subvarieties:

A complex submanifold is always an analytic subvariety‘ , since we can just chhoose U to be the

domain of the adapted chart and f; to be 2511, - , 2p.

An analytic subvariety may locally be a complex submanifold

,let A C M be an analytic sub-

variety, p € A is called a regular point, if we can find open U C X and f1,-- -, fr € O(U) such

that ANU = {z € U|f1(2) = -+ = fu(2) = 0} andrankM

is locally near p a complex submanifold of dimension n — k.

(p) = k. In this case, A

The locus of regular points of A is denoted by Ay, its complement in A is called the singular locus,
and its elements are called singular points of A.

And there is an amazing theorem about analytic variety and algebraic variety:
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Complex analytic subvarieties of CP" are algebraic.

Roughly speaking, when one see the words below in the left column, the words in the right column

should appear in one’s mind.

+— Zero Locus
Algebraic | «+— Homogeneous Polynomial
<— Holomorphic Function

Existence of Complex Structures On a Given C'°° Manifold

A complex manifold is an even dimensional orientable differential manifold.

Proof. Recall the definition of an orientable real manifold, i.e. there exists an atlas {U;, ¢; } such that
whenever U; NU; # @, then detJ piop;! > 0, since for complex manifold M the transition map ¢; o goj_l
is holomorphic in C”, then it suffices to show that for holomorphic f, detJ ¢ R>o0.

Actually, we will show that detJ]R |detJ;§|2 suppose 2 = X ++/—1Y and f = U +/—1V, then

from Cauchy-Riemann equation, we have

oU 9V U oV

0X Y’ oYy X
oft o 1[0 0
C _ —1—
Recall J = < Ozj)m and actually using — 9 2 ( oV 1 ay), thus

off 1 a
99 (ax - T (u' +V=10')
ou;
OxJ 8y3 ’
where the last equation we use the Cauchy-Riemann equation, so we have
ou
c_Y"" _ /—
= ox
hence we know that
U ou o ou
R
detJ; = det gj gi; = det _8@ gj
0X J9Y oY 0X
‘]5(”: 8£ JC 8£
_/—-1J¢ C
V—=1J; Y 0 J;

= |detJF|%.
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Finally we finish the proof. &
Example 2.1.3. RP?" can never be viewed as a complex manifold.

However, for a given even dimensional oriented manifold, it is not always clear whether or not we
can make it a complex manifold.

But there are topological obstructions to almost complex structure, this can rule out all even di-
mension spheres except S and S%, we already knew S? is a complex manifold, but the S° case is still

open, more details can be found here .

Calabi—-Eckmann Manifolds

We can make S?P+1 x §2¢+1 into a complex manifold.

The idea is that we can write

p

> Jail? = 1} , Sl = {z c crt!

S2rFl — {z e crtl
=0

q
Z|Zi|2 = 1}7

i=0
and we have the Hopf fibration maps :

Tp S+l cpr, Tq S+t 5 CcPY,
each with fiber S!, i.e., S! bundle, so if we consider the map

T = (mp,my) : ST x §%TL 5 CPP x CPY,

then we can view | S2PH1 x §2¢+1 a5 a fiber bundle on CPP x CP? ‘ , which is a complex manifold (Note

that the product of complex manifold is still a complex manifold), with fiber S' x S = T2,

Since the base space and the fiber can all be viewed as complex manifolds, so a natural idea is that
we may construct the complex chart using their charts. To be precise, we first consider Tours, fixa7 € C
with Im7 > 0. We denote by T2 = T, the complex torus C/(1, 7).

Consider the open sets
Ui = {(2,7) € St x 52q+1|zkz} # 0},
and using the coordinate map of CP? x CP?, we have the map

hi; - U; — CPP x CP4 x T, %) crta 7,

— / //\ /
20 2 Zp Z Z; Z )
AN P ~0 J q
hkj(zvz)_ P P )7/)"'77/)"'77/7251@'
“k 2k 2k 2§ z; f
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1
where t;.:(z,2') ==
k]( ) o \/_—1
valued function.
Then using the coordinate map from 7T to R? then one can get the final coordinate map of S?P*1 x

(log 24 + 7 log z}) mod (1, 7), note here “mod” to make log to be a single-

S24+1 The compatibility may be trivial to verify, but I don’t know either.

Corollary 2.1.2: Kai Zhu

We can make RP?P*! x RP?*! into a complex manifold.

Proof. I guess it is right, but I’m not sure.
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2.2 Vector Bundles

Holomorphic Vector Bundle

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of vector spaces,

varying holomorphically.

A holomorphic vector bundle of rank r over a n—dimensional complex manifold M is a com-

plex manifold E of dimension n + r, together with a |holomorphic | surjective map 7 : £ — M

satisfying:

1. (Fiberwise Linear) Each fiber E, := 7~ 1(p) has the structure of r—dimensional vector

space over C;

2. (Locally Trivial) Thereis an open cover of M, U = {U;};cs such that each 771 (U); is

biholomorphic [to U; x C” via ¢; : 7~ +(U;) — U; x C", and Ep = a1 (U;) — U; x C"

is a linear isomorphism onto {p} x C" for any p € U;. y; is called a local trivialization.

A vector bundle of rank 1 is usually called a line bundle.

Whenever U; N U; # @, we have a holomorphic map, called the transition map, v;; : U; N U; —

GL(r, C) (viewed as an open subset of C") such that
i o9 (p,v) = (0,0 (p)v), PEUNT;, veE,
Those families of transition maps satisfies the cocycle condition:

2. whenever U; NU; MUy # @, we have| dyjtbutdyi = I [on Ui N U; N U

The name “cocycle” is no coincidence. In fact we will see later that {1);;} above is indeed a
cocycle in Cech’s approach to sheaf cohomology theory. More precisely, we have
(00)ijk = Yk o (i) ™" 0 Vij = gtk = I, <= oY =0.
On the other hand, if we are given a set of holomorphic transition maps {v;;} : U;nU; — GL(n, C)

satisfying the cocycle condition, we can construct a holomorphic vector bundle by setting

E=| | x C’“)/ ~,

iel

where (p,v) ~ (q,w) for (p,v) € U; x C" and (¢, w) € U; x C"iff|p = g and v = ¢;;(p)w]|.
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Let 7 : E — M be a holomorphic vector bundle over M. Let U C M be an open set. A

holomorphic section of E over U is a holomorphic map s : U — FE such that ,

i.e.,, s(p) € E(p) forany p € U. The set of holomorphic sections over U is usually denoted by
(U, O(E)) or O(E)(U). (Note that the notation comes from sheaf theory)

Roughly speaking, you can really view a section as a E’—valued function.

Figure 2.1: Fiber bundle and section

One of the fundamental problem for the theory of vector bundles is the construction of | global | holo-
morphic sections of a given bundle, and the main difficulty is there is no holomorphic partion of unity,

since if a holomorphic function has compact support then naturally it is contant 0.
An important tool is the L?-method for the —equation. One can find the basics from Hormander’s

book. It is interesting that whether or not we can solve the equation depends on the , In

particular, | the curvature of the bundle‘ .

Let ¥ : E — M and 7% : F — M are holomorphic vector bundles of rank r and s resp. A

bundle map from E to F' is a holomorphic map f : £ — F such that
1. f maps E, to F), for any p € M;

2. flg, : Ep — Fyis alinear.

When a bundle map has an ‘ inverse bundle map |, we will say that two bundles are isomorphic.

Another fundamental problem is the classification problem. One important tool is the theory of

characteristic classes | that we shall discuss later.
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Also the set of ‘ isomorphic classes‘ of holomorphic vector bundles over a given complex manifold

has rich structures and is an important invariant for the complex manifold.

Example 2.2.1 (trivial bundle). For complex manifold M then M x C" withw : M x C" — M is a

holomorphic vector bundle over M, called the product bundle over M, then the holomorphic bundle

that is ‘ isomorphic to X x C"

is called trivial bundle, denoted by C".

Example 2.2.2 (holomorphic tangent bundle). Let M be a complex manidold f dimension n. We shall
now construct its “holomorphic tangent bundle” T M as follows :
Let p € M, we first define the C-module

Oy = lim Oy (U) = | | (’)M(U)/ ~,
U>p

where the direct limits is taken with respect to open sets with p € U and the equivalent relation is given
by f € Op(U) equivalent to g € Op (V') iff we can find another open set p € W C U NV _such that
flw = glw |, and Oy p is called the stalk of Oy at p, an element of Oy, i.e., a equivalence class [ f]

is called an germ of holomorphic function at p.

A tangent vector at p is a derivation X : Opr ), — C, i.e., a C-linear map satisfying the Leibniz rule

X,(fg) = Xp(f) - g(p) + f(p) - Xp(9) |

The set of tangent vectors at p is easily seen to be a C—vector space. We call it the holomorphic tangent
space of M at p, denoted by T,,M.
If p; : Uy — C" is a holomorphic coordinate chart with ¢; = (2',---,2"). Then we can define

€ T,M to be
p

02k

ot
(=228 ) e,

0

Th how that| ¢ —
en one can show tha {azk

n

} is a basis of T, M, using the same way of real manifold.

P) k=1

LetTM = |_| T,M, and define ™ : TM — M in the obvious way. We can make it a holomorphic

peEM
vector bundle as follows: Let (U;, p;) be a holomorphic chart. Then we can define the local trivialization

@i w1 U;) — U; x C™ to be

_ ) .
©i (p’akazk ) = <p7 ala"' y )
p

This gives a complex structure on T'M and at the same times gives a local trivialization of T M over U;,

and if U; N Uj # @, then one can easily check if p; = (21, ,2") and ¢j = (w',--- ,w") then
_ 07!
5u0) = (047 )en = (Gupler))

A holomorphic section of T'M over U is called a holomorphic vector field on U.
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Example 2.2.3 (holomorphic cotangent bundle). Any f € Oy, defines a linear functional on T, M
by Xp = Xp(f), we call this df|, € (T,M)* =: TyM. T;M is called the holomorphic cotangent

space of M at p. It is easy to see that if (U;, ;) is a holomorphic chart, and ¢; = (2*,--- ,2"), then
n
0
{d2F |, }7_, |is the baisis of Ty M dual to 9k
P) k=1
We can similarly give T* M := |_| T;M a holomorphic bundle structure as T'M, called the holo-

peEM
morphic cotangent bundle of M.

A holomorphic section of T* M over U is called a holomorphic 1-form on U.

Line Bundles

To have a better understanding of vector bundles, we need to start from some basic vector bundles, trivial
bundle is to boring, so the next interesting but not too hard objects are line bundles.

Let 7w : L — M be a holomorphic line bundle and {U; };c; an open cover by trivialization neighbor-
hoods, and ¢; : 7= Y(U;) — U; x C the trivialization map. Since m , now the transition

map 1;; : U; N U; — C* become non-vanishing holomorphic functions on U; N U;.

Let s € I'(M,O(L)) ,then p;os|y, : U — U; x C cou;d be represented by a holomorphic function

fi € O(U;), such that‘ vioslu,(p) = (p, fi(p))
When U; N U; # @, since s|y, = s|y, on U; N Uj;, we have foraany p € U; N Uj :

, note it is s|y, since s is a global section.

(p, fi(p)) | = pios(p) = (piow; ') o pi(s(p))
= (pio; ) fi(p) = | (0, ¥is () f5(p)) |

So we have f; = ;;f; onU; NUj, i.e., once we have a global holomorphic section s, there exists a
family of holomorphic functions f; € O(U;) satisfying this condition.

On the other hand, once we have such family of holomorphic functions {f;};c7, one can locally
define s|y,, and from f; = v;; f;, we can patch s|y;, together, it is easy to check the global s is actually

holomorphic, so the condition and the existence of global holomorphic section is equivalent.

Using the language of Cech cohomology, we have

3 {fi}ier suchthat f; = 1;; f; <= {1;} is a coboundary,

since {1;;} is already a cocycle, this means that [{1;;}] = 0 in H?(M, O), so from this we know that

the the cohomology describes the obstructions to construct a global holomorphic section.

Example 2.2.4 (Universal line bundle over CP"). We define a holomorphic line bundle U — CP" as
follows: As a set,

U = {([z},v) € CB" x C™*1Jo € [2]},
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where we view (2] as the 1-dimensional subspace of C" ' determined by z. As one can easily check, we
can write

U = {([z],v) € CP" x C""|v'2d — 02" = 0,Vi,j =0,--- ,n}.

From this, it is easy to see that U is a complex submanifold of CP™ x C"*! and hence a complex manifold.
The projection onto its first component CP" is clearly a holomorphic map, with fiber the 1-dimensional
linear subspace of C"*1 generated by (2°,-- - , 2").

Now we check U is really a line bundle, thus for local triviality, we use the holomorphic charts

{Ui, pi}*_ defined before, recall U; = {[z]|2" # 0}, and

0 " n
z Z z
Spi([zo""7zn]):(Zi’.“7zi7”.7z,i>7

0 n
z
thus on 7= *(U;), each v € Uy), can be uniquely written as t - ( R IR l) so we define
z

_ B ) 20 P
¢i([z],v) = @i(z,t - vo) = ([2],1) € Ui x C, vy = (zp L ’zi> :
So we have {7~ Y(U;), ¢} is the local triviality of U™, and note hard to see that the transition func-

)

tion on U; N Uj, then we have 1;;([z]) = Z—j , more precisely, suppose ¢;([z],v) = ([z],t;), and
2

v;([z],v) = ([2],t;), then we know 1);; from the equation below
wijtj-vézti-vézv:tj-vg.

Constructing New Bundles From Old Ones

The usual constructions in linear algebra all have counterparts in the category of vector bundles over M.

Let E, F' be vector bundles over M of rank r and s respectively.

1. (Direct Sum)

The direct sum of E and F' is a vector bundle of rank r + s with fiber £, & F},. Suppose {U;, ¢; }

and {V},;} is local trivialization of E, F' respectively, then WLOG there is a refinement of ¢/

and V, and is the target trivilization.

Assumen the transition maps are 7);; and y;; respectively, then the transition maps for £/ & F' are

precisely | diag{n;j,vi; } |-

2. (Tensor Product)

The tensor product of £ and F' is a vector bundle of rank rs with fiber £, ® F},. Now assume E is
a general vector bundle and L is a line bundle, with transition maps 1);; and 7);; respectively, note

¥i; € Gl(r,C), and n;; € C*, thus the transition maps is 7;;1;;.
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Actually, we have a more general result, suppose v;; and 7;; are the transition maps of £, F' resp.,

then for any (p,v ® w) € E ® F, we have

vi @ wi = Wiv; @ wy, v = Pijuj, wi = MWy,

so more precisely the transition maps of £ @ F'is ‘ Wi = 5 @ nij

. (Hom(E, F))

Hom(E, F') is a vector bundle of rank rs with fiber Hom(£), F},). In particular, we define the
dual of E to be E* := Hom(E, C), whose fiber over p is exactly the dual space of E,, i.e, the
(Ep)*. Since there is a natural isomorphism between V" and V*, thus one can easily write the local

trivilization of E*.

Now we consider the transition functions, suppose v;; is the transition maps of F, then from a

genreal linear algebra result: If V% T has matrix A, then 1* £ V* has matrix A”. Thus we

so we have | U;; = (wiTj)_l .

konw that the transition maps of E* , Wj; = 4,

In general, from linear algebra, we know that Hom(V, W) = V* @ W, one can check this by

writing all the basis down. So we naturally have Hom(FE, F') & E* @ F, thus from this we know

that the transition maps are precisely (@DiTj)_l ® 1ij

Example 2.2.5 (The hyperplane bundle). Let U — CIP" be the universal line bundle, its dual is usually

denoted by H, we call it the hyperplane line bundle. Another common notation for H is O(1), which

comes from algebraic geometry. We also write the HF, or O(k), short for the k-times tensor product of

H,ie, H* :=H® - ®H and O(—k) := H* = UF.

Suppose H*¥ — CP" be the hyperplane line bundle, and k£ > 0, then

dimcI(CP, O(H*)) = (" Z k) .

Proof. Lets € I'(CP", O(HF)), then from preceeding discusions, we recall two basic facts:

. For a line bundle L with transition function {¢;}, then s is a global section if an only if there

exists f; € O(UZ) such that ¢; o 5|Ui = (ld, fl), and f; = 1[)ijfj .

)

. The transition function of U is ¢;; = T then since H is the dual of U, then the transition maps
z

27 .. . b
are —, furthermore, for the tensor product , the transition maps ¥;; of H” is actually <Z> .
z z
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So from above, we know that s can be represented by f; € O(U;), where U; = {[z] € CP"|z* # 0}.

There f;’s satisfy the following equation

fillz]) = ()kfj([Z]), z€eUiNUj)|

Pulling back to C"*1 — {0} we can view (z%)" f;([2]) as a homogenous function of degree k on C"*! —
{#* = 0}, which is also holomorphic. Now the above compatibility condition means that these (2%)* f;([z])’s
could be glued together to form a holomorphic function F' on C"*! — {0}, homogenous with degree k.
By Hartogs extension theorem, it extends to a holomorphic function ¥ € O(C"*!), and from the
homogeneity and continuity, we know that £'(0) = 0. From this we easily conclude that F" is a homo-
geneous polynomial of degree k.
On the other hand, it is easy to see that any homogeneous polynomial of degree k in C[2°, - - - | 2"]

determines uniquely a holomorphic section of H*. So we have

s € D(CP", O(HF)) LN homogeneous polynomial of degree k € C[2°,-- -, 2"] |

since the latter has basis (21)*1 ... (z%)¥ with ky + --- + k; = k, then given (iy, - - - , ), the numbers

of the positive integer solutions is (If 11), and the tuple 7; < - -- < 7;’s number is (”Jlrl), then
" k—1\ (n+1 n+k
dimcI'(CP", O(HF)) = : = :
mere o) =3 (371)-("71) = ("))
then we finish the proof, hope there is another way to calculate the dimension of the polynomial. )

Ifk < 0, then similary if there is a global section s, then there must have a family of f; € O(U;)
fillz]) _ fi([=z]) fi([2])
(z)F ()P ()"
can still glue them together and have a holomorphic function F on C"**! — {0}, but one can not extend

such that is still holomorphic on C"*! — {2 = 0}, thus we

on U; N Uj, note

F to 0, which is contradicted to Hartogs extension theorem, then we know that f; must all vanish, thus
when k < 0, T'(CP", O(H*)) = {0}.

The isomorphic classes of holomorphic line bundles over M is called the Picard group of M,

and the group operation is given by

|[L4] - [L2] := (L1 ® Lo]

U

and the unit element is C, and [L]~! := [L*], and the group is denoted by Pic(M).

For CP", we have Pic(CP") = Z, and any holomorphic line bundle is isomorphic to O(k) for some

k € Z. However, this is rather deep, we will need sheaf cohomology to prove it.
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5. (Wedge Product)

Let E be vector bundles over M of rank r, for £ € N and £ < r, the degree k£ wedge product of
E is a vector bundle A\FE with fiber /\kEp at p. The highest degree wedge product A"E is also
called the determinant line bundle of F, since its transition functions are precisely .

. (Pull back via holomorphic map)

Let E — M be a holomorphic vector bundle of rank r, f : N — M be a holomorphic map
between complex manifolds, then we can define a pull back holomorphic vector f' E over N. In

fact, we can simply define the total space of f*FE to be

fE:={(y,(z,v)) €Y x Elx = f(y)},

and p : f*E — Y is just the projection to its first component.

Now we describe f*E via transition maps: if {U; };cy is a trivializing covering of M for E with
transition maps v;; : U; N U; — GL(r, C), then we choose an open covering {V}}jcs such that

f(V;) C U; forsome i € I. We fixamap 7 : J — I such that f(V;) C U,;).Then the transition

maps for f*E with respect to V; N V4, then the transition maps | Wst = 97 (5)7(1) © f |
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2.3 Almost Complex Manifolds

One of our interested problems is :

When can we make a manifold into a complex manifold ? ‘

Recall the reason we want to study manifold is to generalize calculus, so the differention and integra-

tion are the most improtant, thus when given a real even oriented manifold, before we give it a complex

structure, we need to firstly ’ make its tangent space into a complex vector space |, if not, we can not even

define what is v/—1 !

Generally, for a 2n real vector space, v/ —1 is actually an endomorphism

If V is a real vector space of dimension 2n, then we call a R—linear map J : V' — V such that

J? = —id|is a complex structure on V.

If V have a complex structure, then V' can be regarded as a C—vector space by defining
(a+bvV—1)v:=av+bJv, Va,beRveV,

actually J always exists and not unique, for a basis ¢! = (0,---,1,---,0), one can check that for
arbitary P € GL(2n,R), if J can be represented by the matrix
1. 0 1 0 1
P~ diag RO P,
-1 0 -1 0
then J is actually a complex structure on V.

Now for a 2n real oriented manifold, for p € M, we can define a real tangent vector at p and the
corresponding real tangent space at p, 7, ;[)RM . In terms of coordinate charty = (z!,y!, -, 2", y"), we
have T M = spang {0,i|p, 0,i|p}7_,.We can give | | T* M a structure of R-vector bundle of rank 2n,
called the real tangent bundle of 1/, and denoted by T® M.

Now we hope we can make the tangent space into a complex vector space, thus

Let M be a real orientable differential manifold of dimension 2n. An almost complex structure
on M is a|bundle map|.J : TR M—T®M satistying J?> = —id. And a real manifold with such

almost complex structure is called almost complex manifold.
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If one ignore the ”bundle map” condition, one may think each manifold is almost complex

manifold, since we can always define Jg = —id at T;,RM . But the truth is that J the bundle map actually

is a (1,1) tensor field, thus it |depends smoothly on p € M |.

Globally, having an almost complex structure means that one can define the J, in any patch and
lue them together without encountering obstructions or singularities. There are examples where such
obstructions appear; the most notable is the four-sphere S*. It is known not to allow for an almost

complex structure (see e.g. Steenrod, 1951), hence S* is not an almost complex manifold.

Complex manifolds are almost complex.

Proof. Naturally, for a complex manifold, locally we have a coordinate chart (z!,--- , 2"), and holo-

n
. . . 0
morphic tangent bundle 7" M, with basis {({)k } , then suppose z* = 2* + \/—1y*, then we can
z
P) k=1

view M as a real 2n oriented manifold with local coordinate (2!, 3!, .- 2™ y"), then we define

o 0 P P
TEM - TRM, J— =7, Jag=—727t
J - C ek T e Tk T ok

one can easily check J is really a bundle map, thus is a almost complex structure. &

If an almost complex structure is induced from a complex structure , we will call it integrable.

Example 2.3.1. For S?, we can define J : TRS? — TRS? as follows: we identify TXS? with the
subspace of R3:TXS? = {y € R3|z-y = 0}. Thenwe can define J, : T=S? — TRS% by J,(y) := zxv.
On can check that this is an integrable almost complex structure, induced by the complex structure of

S? > CP!, and J actually means the rotation of 90° clockwise.
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Example 2.3.2. For S8, we have a similar almost complex structure given by wedge product in R”. Note
that the wedge product in R? can be defined as the product of purely imaginary quaternions. To define
this wedge product in R”, we shall use Cayley's theory of octonions.

We write H = R* the space of quaternions ¢ = a + bi + cj + dk with a,b, c,d € R, satsifying
2= k2= 1

and
ij=—jJi=k, jk=-kj=1i, ki=—tk=].
Then this multiplication is still associative but not commutative. For q € H, we define ¢ := a — bt —
cj — dk, then |q|> = qq.
Now we define the space of octonians, O = RS, as O := {x = (q1,2)|q1, 2 € H}. The multipli-

cation is defined by

(q1,92)(d}, 3b) == (@14} — dbq2, b1 + @2d).

2 here the - means the ususal inner

We also define & := (q1, —q2), then we still have xT = x - © = |x
product in R8. Note this multiplication is even not associative.
We identify R as the space of purely imaginary octonians. If x,x' € R”, we define x x x' as the

2axa = -2 xx and (xx2') 2" =

imaginary part of xz'. Then we can check that vx = —|x
x- (2 xa").
From this, one can define an almost complex structure on S¢ C R7 in a similary way as S*: identify

T,.S% with {y € R"|x - y = 0}, then define

Ja:(y) =T XY.

One can prove that this almost complex structure is not integrable. (Ref: Calabi: Construction and

properties of some 6-dimensional almost complex manifolds)

For spheres of even dimension 2n, it is known (Borel-Serre) that there are no almost complex
structures unless n = 1,3. A modern proof of this fact using characteristic classes can be found in P.
May’s book on algebraic topology. It is generally believed that there are no integrable almost complex
structures on S®, however S.T. Yau has a different conjecture saying that one can make S into a complex
manifold. This is still open.

Now we return back to the discussion about complexified the tagent space, it is easiliy to be found
that the way we complexify is not quite well ,because we use J as /—1, but we hope the coordinate is

z, and there is no z in our previous discussion.


https://www.jstor.org/stable/1993108
https://www.jstor.org/stable/1993108
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So now to make the coordinate from (2!, 42 --- 2™, ™) to (z!,--- , z"), note that if the manifold
is holomorphic, then there is no need to consider z, but now we only have smoothness, so we just simply
complexify V to get Vi := V ® C. We also extend .J C—linearly to V¢, again J? = —id.

There is a direct sum decomposition of Vo = V1.0 @ V%1, which are eigenspaces of .J resp. In fact

we have a very precise description of V'1:? and V0!:

VIO = {y —V=1Jojv eV}, VO ={v4/-1Jvjv e V}|

Now apply this to (T M, J) for a manifold with an almost complex structure: define the complex-
ified tangent bunlde to be TCM := T®M ®p C and we have the decomoposition TM = T1OM @
T M, which are the /—1 and +/—1 eigenspaces of .J, respectively.

o n
When J is integrable , 71 M is locally generated by { N} , so we can identify it with 7" M,
2

k=1

the holomorphic tangent bundle of complex manifold M.
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2.4 de Rham Cohomology and Dolbeault Cohomology

From now on , we will always assume M is a complex manifold, and now we consider the holomor-

phic cotangent space AP T* M, which is locally generated by
dz Ao AdzP Adzit A - A d2da,

we denote the smooth sections of A”*?T* M over an open set U is denoted by A?7(U), and

k b,q
AFU) =T (U,/\T*M) =T|U, @ NT"M

ptq=k

Naturally, we can define the exterior differential operator d : A*(U) — A*+1(U), and further-

more, we define the operators
8 :=TPT1e (- APUU) — ApH’q(U)

and

O :=IP9tl o g - APA(U) — Azu,qul(U)7

where I1P+ is the projection maps from APT4(U) to AP4(U).

When the beginner firstly meet these three operators may be quite confused, why we define
such 0? Formally, it is not wrong to view z* and 2k just 2n different variables, then @ and O seem just to
distinguish those two kinds of variable, why? This is because the definition of holomorphic, we always
hope one thing f is holomorphic ,then we need df = 0, i.e, to avoid .A%¢ things occur.

Now a smooth section of A7 T* M over a coordinate open set U is of the forms

B L a ; — —
n= E Uiy oy jrojg 42 A AP AR A A dRe,
1<in < <ip<n, 1<j1 < <jg<n

where a,

ireipige €| C(U;C) | we write ) = Z a4z A dz? € APY(U) for short.
[|=p|J|=q
In this case, we have

dn = Zdalj/\dzl/\dzj

IJ

= Zaalj/\dzl /\dzj—i-zglj/\dzl Adz’
I,J 1,J

c AIH‘LQ(U) D Ap,q+l(U)_

So we always have |d = 0 + 0|,
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Since we always have d? = 0, we have 0 = 9% + 7+ (00 + 00), acting on AP4(M). Comparing

types, we get

2 =0, =0, 99+90=0.

We can define from these identities several differential cochain complexes:

1. (de Rham complex)

0— AM) S A S-S a2 — 0.

From this we define the de Rham cohomology (with coefficient C)

HJjp(M,C) == Ker d| 4e(ap) / dA*1 (M) |

Its dimension by, is called the k-th Betti number of M.

2. (Dolbeault complex)
0 — APOM) S AP (M) S oo S AP (M) 0.

From this we define the Dolbeault cohomology

HEY(M) := Ker 9] gr.a(ar) / DAPSTH(M) |

Its dimension h?9 is called the Hodge number of M, they are important invariants of the complex
manifold.
3. (Holomorphic de Rham complex)

0- QM) Faton S o — o,

where *(M) locally generated by O(M) ® {dzF}7_ |, since always we hvae 0 : O(M) ~ 0,

then d = 0 + 0 = 0, we define the holomorphic de Rham cohomology

HEL (X, Q) == Ker (Qk(M) 9 Qk“(M)) / A1) |

The relation between these cohomology theories, as well as computational tools will be discussed

when we finish sheaf cohomology theory and Hodge theorem.



Sheatf Theory

3.1 Presheaves and Sheaves

A presheaf F of ‘ abealian groups (or vector spaces, rings, etc.) ‘over a topological space M con-

sists of an abelian group (or vector spaces, rings, etc.) I'(U, F) = F(U) for every open subset

U C M and a group homomorphism (resp. linear map, ring homomorphism,etc.) for each pair

V cU, | F(U) = F(V)|, called restriction homomorphism, satifying

2. forany W C V C U, we have |7, = o rliy |: F(U) — F(W).

One who is familiar to the Category theory will quickly realize, the presheaf is actually a
contravariant functor from (M, ) to Abel (or Vect, Ring,resp.), where the category of (M, ¢) has the

objects : all of the open subsets of M, and the morphisms: the inclusion map of ¢ : V' C U.

An element of F(U) is vaually called a section of F over U. We also defined the stalk of F at

apoint p € M to be
Fpi=lim F(U) = | | f(U)/ ~

where the direct limit is taken with respect to open sets p € U, and s € F(U) is equivalent to

t € F(V) iff we can find another open set p € W C U NV such that |7, (s) = ri;(t) | The

image of s € F(U) in F,, is an equivalence class, denoted by sy, called the germ of s.

Example 3.1.1 (continuous function presheaf). For F = C3,, the presheaf of continuous function on

M. More precisely, C?W(U ) is the ring of all continuous maps f : U — R, and the restriction homo-

morphisms are really the restriction.

And generally, one may call the stalk of C; at a point p is the function germ, one should note that

they denote the same thing. And if' s, = t,, then it does mean s(p) = t(p), instead, it is a much

sronger condition, means that we can find a neighborhood V of p such that s|y = t|y .

Now we continue the discussion of the presheaf C{,, the following two additional conditions are

naturally satisfied: We let U = | U; be a union of open subsets U; C M, then

29
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1. If f,g € C%,(U) with rgi(f) = rgi(g) forall i, then f=g;

2. If functions f; € C,(U;) are given for all i such that rgszj (fi) = rgijj (f;) | for any j, then

we can patch them together, i.e, there exists a function f € C{,(U) with rgi (f) = fi foralli.

Those propoerties are very essential, but not all presheaf can satisfy the conditions above, so now we

hope to study the better presheaf, we will use the propeties above as two more axioms:

A presheaf of abelian groups F over M is called a sheaf, if it satisfies the following two prperties:

(S1) Assume we have a family of open sets U; C U, i € [ and |J,U; = U. If s,t € F(U)
satisfies rgi(s) = rgi (t) |, forall € I, then[s = t];

(S2) Assume we have a family of open sets U; C U, i € I and | J, U; = U. If we also have a

family of sections s; € F(U;), foralli € I, satisfying TllJ];mUj (si) = TmeUj (sj) |[whenever

U; NU; # @, then there is a section s € F(U) such that rgi(s) =s;, foralli € I.

Note that by (S1), the section in (S2) is also unique.

Example 3.1.2 (preshaef but not sheaf). Let G be a given abelian group, we define the constant presheaf

over M to be Gy (U) := G for any non-empty open set U C M, and rg = id for any non-empty pair
V C U. But generally, it is not a presheaf, for example, suppose then for s € Gpre(U),

then it is actually a element in group G, and t € Gp(V'), with s # t, then from (S2), there exists g € G

such that s = g = t, a contradiction.
There are more examples of sheaves on the complex manifold M:

1. Ox is the shaef of commutative rings of holomorphic functions over M, and Ox (U) denotes the

holomorphic functions on U, we also call it the structure sheaf of M.
2. & is the sheaf of commutative rings of smooth functions over M, and £(U) = C*(U, C).

3. If 7 : E — M is a holomorphic vector bundle, and O(E) is the sheaf of all sections, more

precisely, O(E)(U) denotes the all holomorhic sections over U, it is actually a O x —module.

Let F and G be two (pre)sheaves. A (pre)sheaf homomorphism ¢ : F — G is given by group

homomorphisms for each U open, ¢y : F(U) — G(U), such that whenever V' C U, we have

(r)Y oy = py o (r)7|.
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More precisely, we have the a commutative diagram:

FU) % G(U)

)] [

FV) = 6(V)

Once a homomorphism ¢ : F — G of (pre)sheaves of abealian groups is given, one constructs the

associated presheaves Keryp, Imp and Coker(y) which are defined in the obivious way, for example
Coker(¢)(U) := Coker(ypy : F(U) = G(U)) = G(U)/Imypy .

But one should note that they are all presheaves, but only Ker(y) in general is a sheaf, but Im(y)
and Coker(y) aren’t.
Proof. Why Ker(yp) is a sheaf ? Now we check by definition:

(S1) Assume U = |J, U;, and we have a section s € Ker(¢)(U) := IC(U), and for each i € I, we have

since we have a natural presheaf homomorphism, induced from the inclusion ¢ : IC — F,

K(U) —“— FU)

g, | |07,
K(Ui) —— F(Ui)

and then we note that s € KC(U), naturally‘ w(s) =se€ FU) ‘, so we have

(r)E,(s) = (), © () (s) = w, © (M), (s) =0,
then from F is a sheaf, then we know that s = 0, then /C satisfies the sheaf axiom 1.
(S2) Now we assume s; € K(U;) = Ker(yy, ), and (r’c)gszj (si) = (r’c)gijj(sj), so we have

KA\U; K\Uj
(") Ginw, © wilsi) = ()yiau; © w;(s5)
F\U; F\U;

= winv; © (1 )gin, (1) = twinu; © (1) giaw, (55)

Ul' _ U,
= (T]:)UimUj(Si) = (T]:)Uszj (s5) ]

the last equation comes from the injectivity of LU;NU; » then since F is a sheaf, then there exists
a section s € F(U), such that (r7)f (s) = s;, naturally one can show that ¢ (s) = 0 then

s € K(U) simiarly, we omit the last proof since it is boring and trivial.



32 CHAPTER 3. SHEAF THEORY

Finally we show Ker(y) is really a sheaf. )

One may feel afraid of sheaf since it may be too abstract for the beginner, but one should note
that, whenever we use sheaf acting on an open set U , things turn to be quite clear and easy, because
now they are just group theory.

Now since there are a lot of presheaves which are not sheaves, so to get more sheaves, a natural idea

is to sheafificate the presheaves:

For any presheaf F over M, there is a (up to isomorphism) sheaf 7 and a homomorphism

6 : F — FT satisfying the following universal property:

]:-i-
\\ 3 £+
o 3

~
~

}—*)Vf g

i.e., for any G over M and any homomorphism of presheaves f : 7 — G, there is a unique
homomorphism of sheaves f* : F© — G such that| f = f* o | If F is already a sheaf, then ¢

is an isomorphism. F is called the shefification of F.

By universal property, if 7, with 6; and F,~ with 6 are both the sheafifications of F,

then we know from the diagram that the induced ffr and f;r give the isomorphism, so the shefification
for any presheaf is unique .

Proof. The most direct proof is to define F*(U) explicitely: a map

s:U — |_|.7'-p

peU

is an element of 7+ (U) if and only if:
l. mos =idy,ie. s(p) € Fpforallpe U,herew : F, — p;

2. For any p € U, there is an open neighborhood p € V C U and a s € F(V') such that for any

q € V, 5(q) equals s, the stalk of s at g.

Now we check that F is really the sheafification of F:
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(Stepl) we will consturct a homomorphism 6 : F — F+, recall when we define a homomorphism, we

actually define a group homomorphism for any F(U) , so it is suffices to define 7, thus for any

s € F(U), then Oy (s) = 3, where for each p € U, |35(p) = s, |.

Then we check that @ is really a homomorphism, i.e, for any V' C U, to check 6y o (r* )‘[f =

(r* +)g o Oy, then for s and Vg € V, they both equal to s,4, so we know that it is a morphism.

(Step2) we will show that F* is really a sheaf, using the morphism € on can easily prove (S1) and (S2)

these two axioms, it is so similar to the proof of Ker(y), so we omit here.

(Step3) we now show the universal property, similarly, we need to construct group homomorphism f{; for

each U open. Naturally, we define| f;F (5) = f(s) € G(U) | one should check the existence of s,

then the uniqueness is trivial to check.

Now we finish the proof, but one can see that I left so much things to be checked, because when I was

typing the proof, I gradually felt boring about it. &

One can define shefification from étalé space:

From F, we define a topological space, called the étalé space associated to F:

F = |_| Fo.
peEM

We have a natural map 7 : F — M. The topology on Fis given as follows: for any open subset

U C M and an element s € F(U), let
[U,s]:={sp|peU}CF

and they forms a baisis B of the topology.

One can refer GTM 81 for complete proof. Then for any open U C M, define F+(U) :=

{s: U — Fis continuous |7 o s = idy}.

If one still can not see sheafication, you should just remeber, a sheafis completely determined

by its stalks, so the key point is .7-"; = Fp, |, we only need to care the local information.

Example 3.1.3. For the constant presheaf Gy over a manifold M, denotes its sheafification G. Then
the elements of G(U) consists of locally constant maps from U to the abealian group, and it is denoted

by constant sheaf. If you are confused with this concept, you can refer handwiki.

Example 3.1.4. Let M be a complex manifold, we define a presheaf M over M as follows: for open

set U C M, elements of Mp(U) are quotients of holomorphic functions on U, with denominator not


https://handwiki.org/wiki/Constant_sheaf#:~:text=The%20constant%20sheaf%20associated%20to%20A%20is%20the,the%20category%20of%20abelian%20groups%2C%20or%20commutative%20rings%29.
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identically zero on any connected component of U. lIts sheafification M is the sheaf of meromorphic

functions. Elements of M(U) are called meromorphic functions on U.

Example 3.1.5 (Skyscraper Sheaf). Suppose S is a presheaf of a fixed Top 11 space X, and fixed a
point p € X, then define S(U) = G, if p € U, otherwise S(V') = {0}, and actually it is a sheaf, and

Sp =G, Sq = {O}, Vq # p.

Proof. We check the sheaf axioms, suppose &/ = UU;, for (S1), suppose s € S(U), and s|y, = 0, if
p ¢ U, then trivially s = 0, otherwise if p € U and s € G*, then we know that s|¢;, # 0, a contradiction.

Now we check (S2), if we have {s;} and s;|v,; = s;|u,;, thenifld = UU; UU;, and p € U;, p ¢ U;
for all 4, j, thus if there exists U;; # @, then s; all equals to 0, so s = 0 is as desired, and the another

case is really trivial, so we omit. &

Example 3.1.6. Suppose U C C, thenif f € O(U), then f, is the Taylor expansion of f at p, and O, is

isomorphic to the convergent power seires at p.

For bounded holomorphic function presheaf 3, we have BT = O.

Proof. The key point is B; = Oy, they are all isomorphic to the convergent power seires at p. &

A sheaf F over X is called soft, if for any subset K C X, the resrtiction map

F(X) = F(K) = lim F(U)

where U takes the all open sets contain K, is .
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3.2 Sheaf Cohomology

In this section, we always assume X is a manifold and F is a sheaf of Abel.

Motivation:the Mittag-Leffler Problem

Sheaf is a useful tool to describe the obsructions to solve global problems when we can always solve a
local one. (Recall the discussion we made in finding a global holomorphic section for line bundle)
To illustrate this point more precisely, we come back to the Mittag-Leffler problem on a Riemann

surface M (Recall it is a complex manifold of dimension 1):

Problem 1. Suppose we are given finitely many points py, - - - , p, € M, and for each p; we are given

n;
a Laurent polynomial Z c,(;) 2~*. We can view this an element of M,,/O,. We want to find a | global

k=1
mermorphic function on M whose

1. poles are precisely those p;’s

2. with the given Laurent polynomial as its principal part of p;.

This problem is always ‘ solvable 10cally‘ : we can find a locally finite open coveringd = {U;|i € I}

of M such that each U; contains at most one of the p;’s, and f; € M(U;) such that the only poles of f;

are those of {p;} contained in U; with the principal part equals the given Laurent polynomial.

The problem is that we can not ‘patch them together‘ : if U; N U; # @, there is no reason to have

fi = fj. So we have to define
fij == fj— [:|€ O(U; N U;) = O(Uy)

and view the totality of these f;;’s as the obstruction to solve the problem.
Now by our choiceof f;, fi; € O(U;;) is because there are no poles for f; and f; on U; N U;, and

note that we have

fij+fjii=0 on U;NUj;

fij+ fix+fi=0 on U;NU; NU

and we call this the cocycle condition and | { f;;} is a Cech cocycle for the sheaf O|w.r.t. the cover .

Now when can we solve the Mittag-Leffler problem on M? We can solve it if we can modify the
fi by a holomorphic function h; € O(U;) such that fl := f; — h; will patch together . (This is because

we only wish the principal part is as our desired, we do not really care about the holomorphic part)
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This means that f, = fj on U; N Uj, equivalently,
fig = hj — hi,

naturally, {h; — h;} is also a cocycle for the sheaf O, but since h;’s are all holomorphic, we call them a

Cech coboundary. So we get the conclusion that we can solve the Mittag-Leffler problem if

the Cech cocycle { f;;} is a coboundary.

Cech Cohomology

The discussion above motivates the introduction of the following Cech cohomology of a sheaf F with

respect to a locally finite cover U of X . We first define the chain groups:

Given sheaf F and ‘ locally finite cover ‘ U, we define

', F) =[] FUs)

el

c'wu,ryc [ Fwi,nUy)

(io,il )€I2

ccu,ryc ] FWU,n---nU)

(io,--- ,ip)GIerl

where {0;,...;, } is in CP(U, F) if and only if
1. whenever iy, = i; for some k # [, we have Tig-ip = 05

2. For any permutation 7 € S,11, we have Ti ()i —1)senT

Uio~~~ip-

() (

Note that we always define 7 (@) = {0}, and write Uy,...;,

short for U;, N - - - N U, one should always note that in our definition,
the o € CP(U,F) will have |I|!/(|I| — p — 1)! components, but in
most books, they only consider ¢9 < --- < 4, and thus have only

(p‘ ﬂl) components.

Example 3.2.1. If X = D' = {z||2| < 1} and is covered by U

as right, so we have o € C°(U,F), then ’O’ = (00, 01,02)

clu, F), then’n = (101, o2, M2)

b 77 e
.7 € C*(U, F), theny = (Yo12).




3.2. SHEAF COHOMOLOGY 37

We define the coboundary operator & : CP(U, F) — CPT1(U, F) to be :

(6U)i0"‘if’+1 = Z(—l)J ’ (T]:)UO o (O-Z'O"'{;"'ip-kl) '

0 ipt1

One should not be afraid of this formula, since it is natural if you view 77 just as the restriction,

more precisely, one can compare this formula with the one in singular homology.

We have d o § = 0, so we have a cochain complex {C* (U, F),0} :

0= COWU,F) S U F) S Soru, ) S

The proof is direct, we omit here and we can define the space of Cech p—cocycles
ZP(U,F)=Kerd C C*(U,F),
and the the space of Cech p—coboundaries
BP(U,F) =sCT YU, F) c CPU, F),

and the Cech cohomology with respect to I

|HP(U, F) := Z°(U, F)/B*(U, F)|

Now we study H" and H' more precisely :
s If[f] € HO(U,F) = Z°U, F), then f = (f)icr € Z°(U, F) is a cocycle, i.e., § f = 0, since
(0F)i5 = 102, (fy) =0 (i) = 0
which means that rg; (fj) = rg:] (f:), since f; € F(U;), thus from (S2), we get a global section f

and from (S1) the uniqueness, we know [ = fis a global section ,thus f € F(X). So H(U, F)

is in fact independent of ¢/ and we have a canonical isomorphism

HO(U,F) = F(X))|

« If [g] € HY U, F), then g = (g;) € Z' (U, F) is a cocycle, so from dg = 0, we actually have
fij + f5i =0 on U;NUj
fis+ fik+fri=0 on UiNU; N Uy

This is precisely the “cocycle condition” we met before. However, this time the cohomology may

depend on the cover
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Now we calculate a more precise example, and it comes from Bott Exercise 10.7:

Example 3.2.2 (Cohomology with Twisted Cofficients). Let F be the
on S* which associates to every open set the group 7. We

define the restriction homomorphism on the cover U = {Uy, U1, Uy}

as the figure right by

where rfj denotes the restriction from U; to U; N U;. Now we calculate H* (U, F), recall we have
0= COU,F) S U,F) 20—
* For H'U, F) = Z°(U, F), suppose f = (fo, f1. f2) € C°(U, F) = Z°,now we find § f:
(6f)o1 = Té1(f1) - 7"81(f0) =fi—Jo

(0f)o2 = rga(f2) — 10a(fo) = —f2 — fo
(6f)12 = riz(fa) — rla(f1) = fo — fu,

soifdf =0, thenwe have f1 = fo, fo+ fo = 0and fo = f1, which means that fo = f1 = fo =0,
then we have f = 0, thus Kerd = 0, then HO(Z/I,]:) =0].

« For H'(U,F) = CY(U, F)/Imé, and in Imé, suppose ho1 = f1 — fo, hoa = —f2 — fo, h12 =
fo — f1, since hg1 + hoa + hio = —2fy € 2Z, thus we know that Hl(u,}") =79

One should note that the reason why HY # F(S!) is because F is not a sheaf, here we define

the twisted restriction homomorphism is only for exercise!

Now we consider if there are two different covers :
Let V = {V;};es be a locally finite refinement of /. This means we have amap 7 : I — J (not

unique) such that V; C U, (;, then we have a homomorphism (I)]Lf : HP(U, F) — HP(U, F) induced by
CP(U,F) = CP(V,F), (0ig-s,) (aT(jo)...T(jp)]Vjowjp) .

One can prove that @Z{,’ is in fact independent of the choice of the map 7.

The cohomology of X with coefficients sheaf F is defined to be the direct limit:

HP (X, F) i=lim H'U, F) = |_| B, F) [ ~
u
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where two cohomology classes [(y,...,)] € HP (U, F) and [(1y.j,)] € HP(V, F) are equivalent if we

can find a common refinement W of I/, V such that

5 ([(4p-4,)1) = @y ([(10--,)1) |

Thus an element of HP (U, F) is an ‘equivalent class‘ of Cech cohomology classes, represented by

an element of H?(U, F), for some cover /. But in many cases, in particular all the sheaves we use in
this notes, there exists sufficiently fine cover U such that H?(U, F) = HP(X, F). (If one is familiar
with Bott Tu, then will soon realize it is similar to the good cover for smooth manifold)

Now before we end this section, we will give a more detailed discussion of H! :

If V is a refinement of ¢, then Y : H'(U,F) — H'(V,F) is injective, and hence so is the

induced homomorphism H'(U, F) — H'(X, F), i.e., we can simply write

H'(X,F)=JH'WU,F)|

Proof. LetU = {U;}icr, V = {Va}aer and 7 : I' — I be a map such that V,, C Ur(a)> SUPpOSE We
have [(f;;)] € H' (U, F) satisfies ®4 ([(f;;)]) = 0. Then consider a common refinement of ¢/ and V

W .= {Wia = UiﬁVa;«éQ]ieI,aeF},

then we have ®¢,([f]) = ®};, o ®Y([f]) = 0, this implies that (f;;) is a cocycle, and

5 (1]) = [(Fislwiarwes )] =0 = | (figlWiariwia)

is a coboundary. So we can find h;, € F(Wj,) such that on W;, N Wz, we have
fijlWianwis = hjg — hia.

Since naturally f;; = 0 by definition, we must have 0 = hja|w,,nw,; — higlw,.nw,;. Since

{Wia }aer is an open covering of U;, by (S2), we can find a h; € F(U;) such that h;|w,, = hiq-

Now consider the covering of U; N U; by‘ UnU;NVy=Wia N Wi ‘ , since

fijWiatWis = Njilwianwis — hilwianw;
B B B
= (hjlvinu; = hilvinu;) Wianwis

= (6(hi))ijlWianwiss

then from (S1) the uniqueness, we have (f;;) = d(h;), equivalently, [(fi;)] = 0, i.e, gb% is injective. o
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Now we finish our discussion about Picard group in §2.2

Let X be a complex manifold, then we have Pic(X) = H!(X,0*), where O* is the sheaf of

nowhere vanishing holomorphic functions.

Recall Pic(X) is the holomorphic line bundle over X under isomorphism claasification.

Proof. Intuitively, the isomorphism comes from cocycle condition , now we offer more details

1. Given a holomorphic line bundle L with local trivializing U/, we get a cocycle {1;;}, and 1;; :
U;NU; — GL(1, C) holomorphically, then we know that (1;;) € O*(Uj;), furthermore, [(v;5)] €
HY(U,0*) C HY(X,0*), from this we know Pic(X) C H(X, O%).

2. On the other hand, if L is isomorphic to L', we can assume that they have common trivializing cov-
erings U, with cocycles {1;;} and {1/}, } resp. The bundle isomorphism map gives \; € O*(Uj;),
such that };\; = Aith;; (check !) , this implies that [(¢;;)] = [(¢};)], from this we know that
Pic(X) = H'(X,0%).

One will also find that it is easily to verify this is actually a group isomorphism. &
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3.3 Fundamental Results for Sheaf Cohomology

Recall that a morphism f : 7 — G of sheaves over X induces for each point p € X a homomorphism
of stalks: f, : F, — G,. We call a sequence of morphisms of sheaves an exact sequence if the induced

sequence on stalks is so for each pint p.

If we have a short exact sequence for sheaves of abelian groups over X
T g
0—-F=>G=>H—D0,

then we have a long exact sequence for cohomologies

0 — HYX,F) —— HY%X,G) —— HYX,H)

HY(X,F) — H'(X,g) — H'(X,H)

HP(X, F) s HP(X,G) —— HP(X,H)

Before we prove this theorem, we need to firstly have a better understanding of the short exact

sequence, more precisely, we need know more about sheaf injective and surjective morpism!

Suppose ¢ : F — G is a sheaf homomorphism, then we call it is
* injective, if the sheaf Kerp = 0;
* surjective, if the sheafication Imp = G.

But the sheaf is not always convenient to use, then when we follow the main idea of sheaf: a sheaf

is completely determined by its stalks, we have the following

TFAE (the following are equivalent):
* o : F — G is injective;

e oy : F(U) = G(U) is injective;
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* ©p : Fp — Gp is injective.

Proof. The main reason has contained in the proof of the Kery is sheaf. )

TFAE (the following are equivalent):
* p: F — G is surjective;

» Forany 7 € G(U), there exists an open cover Y = UU; of U and s; € F(U;) such that

v, = eu,(8:);

* @p: Fp — Gp is surjective.

Generally, we can not have ¢y is surjective, an example is O = O*, the surjectivity strongly

depends on the topological information of U, i.e., the obstructions.

So in short, when we have a short exact sequence of sheaf 0 — F i> g LN VN 0, then

equivalently , we have

05 F, 56, %Hp 0| WpeX,

and we have 0 — F(U) Ty G(U) & H(U) is exact, U C X and is open.
The proof of theorem 3.3.1 is quite long and boring, and it is not a good way for calculation, we will

use the corollary below more frequently:

Suppose we have an exact sequence of the form :

0 1 . a9
0-F-RPLAL LS.

where each sheaf 77 satisfies| H? (X, F*) = 0, for all p > 1, this is called an acyclic resolution

of F, then H*(X, F) is isomorphic to the cohomology of the cochain complex
0/ & 105 & iy 5
05 FX) I FAX)S .. 5 FX) S ..

i.e, we actually have the isomorphism

Ker (]—"p(X) o .FPH(X)>

I

HP(X,F)

p—1

i (]—“P—l(X) O, ]-"P(X)).



Differential Geometry of Vector Bundles

4.1 Metrics, Connections and Curvatures

Let £ — X be a complex (C*°) vector bundle of rank r over a ‘ smooth manifold| X. A smooth

Hermitian metric on F is an assignment of Hermitian inner products
hp(., ) = (.7 '>p

on each fiber £, such that for any smooth sections &, 7 over U, then h(§,n) € C*°(U, C).

Recall Hermitian inner product h means that h(au,bv) = a - b- h(u,v) , i.e., it is C—linear
for the first component, and conjugate C—linear for the second.
Let U is a local trivialization neighborhood of E via oy : 7~ 1(U) — U x C, then we can define

smooth sections of E over U':
el(p) :SO(_]l(p7O7707170770)7 V]-SZST

Then at any point p of U, {e;(p)}]_, is a basis of E,. We call {e;} a local frame of E over U.
Note that E is a holomorphic bundle and (U, /) a holomorphic trivialization, then these e]s are also
holomorphic sections, and we call it a holomorphic frame.

Using local frame, we have local representation of a metric , if £ is a smooth section over U, then
we can write in a unique way & = &'e;, with €8 € C°°(U; C), the smooth complex valued function. Now

we define the smooth fuctions h;; := h(e;, €;), then we have

h(€,n) = h(Eei,nie;) = hz&n |

Now compare to the Riemannian geometry, we need to define connections, since for real version,
VxY is still a tangent vector, so actually, we can view VY asa T M valued 1—form .

So now suppose 7 : £ — M be a complex vector bundle on M, we denote by A*(E) the sheaf of
1—forms with values in F, i.e.,

A(E)(U) := A(U) ® E,
and recall A = C, the smooth complex function, so for real manifold,
V:ATM) - AHTM), Y eTM—VY =uw'®0;,

43
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where w' and 0; satisfies w'(X)9; = VxY.
Now we generalize this definition to vector bundle, the motivation is we wantto differentiate sections
of E (view sections as functions, you will see this is really natural), but it cannot be realized cononically,

so we still need differential forms, a natural way is consider their tensors .

A connection on a smooth rank r complex vector bundle over a manifold X is a map V :

A°(E) — A'(E) which satisfies
1. Vis C—linear, i.e, V(a& + bn) = aVE + bV, for any &, € A%(E)(U);
2. (Leibnizrule) V(f ® &) = df ® £ + V¢, forany f € A°(U), £ € A°(E)(U).
One should note that A%(E) is a sheaf, so when we consider sections, they actuall live in

AY(E)(U), but we usually omit them, one should be clear.

Now we have a local representation of a conncetion : If {e;} is a local frame, then we define a

family of local smooth 1—forms Qlj e AY(U) | satisfying :
Vei = QZ ® €;j.

Sometimes we just write Ve; = 9{ e; for short and omit the tensor operator, we call these {GZJ } connection

1-forms. More generally, for £ = Ele; = £ @ e;, we have

V(€le;) = de' @ e; + £'Ve;
—de @e; + £ e;

= (d¢" +&70) @ e;.
Regard &% as a column vector, and for 9; as a matrix 6 = (93')(2‘,]‘): so formally ,we have

&\ () [er e\ (¢ 3
ve=v|:i|=|:|+]: s =@ | ],

51” df’)" 911” e 9; ET’ gr
so if we identify ¢ with the column vector &7, then we can write| V = d + @ | (Physicists’ notation).

Now we can extend the action of V to bundle valued differential forms, i.e., we define V : A*(E) —

ATY(E), more precisely we have

Viw®§) =dw® €+ (—1)'wAVE|
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for any w € A¥(U), ¢ € AYE)(U), and w ® & € A¥(E)(U), one should note that w A V¢ actually

denotes that w wedges the 1-form component of V¢ .

one can see that V is really the generalization of d the exterior differential.

We define the curvature of V to be © := V2 : AY(E) — A%(E).

The most improtant property of curvature is the linearity of smooth functions, if f € C, and

¢ € A°(E), then we actually have

O(f¢&) = V(dfE+ fVE)
=d(df)E+ (=1)-df AVEFdf AVE+ [V
= fO(8).

Locally if we define the 2-forms ©7 € A%(U) by
@(62) = @z & ej.

Then we have
O(6) = O(E'es) = £'0(e;) = €' Oes.

Now we consider the local representation of the curvature , i.e., we represent @; in terms of 9}:

@;61 = v2(€j) = V(Héel)
= dble; — 05 A Ve
= die; — 0 A Bfe;

= (0’ + 6] A 0 )e;.

so we actually have

i % % l
O = do} + 6] A6,

or |© = df + 0 A 0 | for short, here we view d acts on a martix as acts on each component .

Forany X,Y € TM, we have | O(§)(X,Y) = VxVy& — VyVx{ — Vix €|

Proof. It is known that the both sides are funtional linear for X,Y, &, so we assume X = 0; and

Y = 0;,& = eq, s0 we have ©(&) = 9'36/3, s0 O (X,Y) = @g(@i,ﬁj)eg.
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Note that Vy (£) = VE(Y) = 05(Y )eg, so

V(Vy (€)= V(05(Y )ep)
= d65(Y)es + 65(Y)Veg,

then we know that

VxVyé = (d63(Y))(X)ep + 0a(Y)05(X)e,

= (@03 (Y))(X) + 02(V)EY(X) ) 5.
Thus we have

(VxVy€ = VyVxé—Vixy€)’
= dOZ(Y))(X) + 05(Y)03(X)
— daR(X))(Y) — 03(X)F5(Y)
— 0,([X,Y])
= X(02(Y)) = Y(05(X)) — 05([X,Y])
+O3(X)0(Y) — 03(Y)03(X)

— (@03 + 037 02) (X,Y),

so from ©F, = d4) + Hg A 05, we finish the proof. &
So one can see that the curvature form is really the curvature tensor in Riemanian geometry.
Now we changes the frame and give the transition representation : Suppose { f;} is another local
frame on U, then we can write
fi = ale;,
where (af ) is a GL(r, C)—valued smooth function on U. (When both frames are local holomorphic

frames of a holomorphic bundle, then (ag ) is a GL(r, C)—valued | holomorphic | function on U.)

The new conncetion forms and curvature forms are denoted by 0 and @), we have

0/ f; = Vfi = V(aFey)

= daley, + alVey

k

= daley, + al 0i.e;

= (daéC + Gfag) €k,

and since the left hand side equals gf a?ek, so we have

knl _ k k_J
a;0; = da; + 65a;,
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and in matrix forms we have af = da + fa , 1.e., we can write as following for short

0 =a 'da +a '0a|

Now we consider changing frames of curvature : from the above formula, we get
O=d)+0A0
=d(a 'da+a'0a) + (a"'da+a"'0a) A (a"'da +a ' 0a)
=da ' Ada+da"! Aba+a " dba — a0 Ada
+ (ailda + a710a) A (ailda + cfl@a)
= —(a"'da-a"') Ada +a"tdfa—a 0 A da

+(aMda-a ) Ada +a A da+ a0 A ba
—a7'(d0 + 9 A B)a =[a"'Oa),

where the main trick is the transition formula

‘da_1 =—alda-a"t|

where it comes from 0 = dI, = d(a-a™!) =da-a™! + ada™!.

However, if we use local representation, we can have a shorter proof with the linearity of

curvature form:

Ol f; = O(f;) = O(aker)

= alO(ey) = afOe;,

i.e., we have © af =al @? , note when we write it in martix component, we have a? el = @?ag , then

O =a'0a|

Above the discussion, we know that © is invariant under similar transformation, so from Morita,
we know that, we want to study topological invariant of vector bundles , since curvature form, a r x r
matrix, with each component is a 2-form, although it may not be globally defined, but we can patch local
curvature together, if we find something invariant under similar transfomation of matrix , for example,

determinat and trace. So we have

We can construct a family of globally defined differential forms:

V-1
¢(E,V) = det (Ir + %@) =14+c1(E,V)+-- -+ ¢ (E, V),
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where ¢, (E, V) € A%(X) is called the k—th Chern form of E associated to V.

We will use Chern form to define Chern class later.

In physicists’ language , a connection is a field, the curvature is the strength of the field, and choos-
ing a local frame is called fixing the gauge. The reason for these names comes from H. Weyl’s work,
rewriting Maxwell’s equations. The vector potential and scalar potential together form the connection
1-form, and the curvature 2-form has 6 components, consisting the components of the electric field and

the magnetic field, and in short

’ Yang-Milles Theory ‘
I

’ Differential Geometry of Vector Bundles ‘
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4.2 Chern Connection on Holomorphic Vector Bundles

Since there are a lot of connections, we need to find the most speical and interesting one, like Levi-Civta
connection in Riemmanian geometry, so firstly, we consider holomorphic vector bundles , and then we

need the connection satisfying more necessary conditions:

On a given holomorphic vector bundle £ with a smooth Hermitian metric h, there is a unique

connection V, called Chern connection satisfying the following two additional conditions:

1. (Compatibility with the metric) If £, are two sections, then we have

dh(&,n) = h(VE,n) + h(§, V). 4.1)

2. (Compatibility with the complex structure) If € is a |holomorphic | section of F, then V¢ is

a F—valued (1,0)-form.

One may feel confused when see (4.1), but the fact is that h acts on E, and V¢ is a tensor with
E and differential forms, so we generalize h so thta h(VE, n) means that h acts on £—valued part and

7, the differential part of h(V is the differential part of V¢.

Proof. The proof naturally contains two parts, uniqueness and existence:

(Partl) Let {e;}!_, be a local holomorphic frame, and the connection 1—form with respect to this frame
is (9;'-)197]5,”, satisfying Ve; = 05 ej, since {e;} are all holomorphic sections, so from the com-
patibility with the complex structure, each 0{ is a smooth (1,0)-form.

Now we use the compatibility with the metric to get
dhlj = dh(ei, ej) = h(Vei, 6]‘) + h(ei, Vej)
= h(0fex, e;) + h(ei, OFe)
= 07 hy; + 05 by

€ AL 4 g0,
and since dh;; = Oh;; + 5}115, comparing the types, we have Oh;; = ok hy;, so we vae
Oh=0"h| = |0T=0h-h""|

Denote A1 = (hJ%), then we can rewrite this as

67 = h*on,;,. (4.2)
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Also, since hT = h, the (0,1)-part gives the same equation, this proves the uniqueness.
(Part2) For existence, we simply set locally 0; = I'Li“th;C on U, and define for s = s’e;:
Vs := (ds’ + Sjé?;)ei,

é-ei is another

holomorphic | frame on V' with U NV # &. Then a is a holomorphic matrix. Furthermore, we

have h = a'ha, this is because

and now we need to check that this is globally well-defined. For this, if f; = a

hig = h(fi, fj) = afalhg = af hygal,
so we have the another connection forms are
6:=(@h-h™")T =a 'da+a fa,

since s = 3 f;, we have s := (s',--- ,s")T,and 5 = (3,--- ,3")T then 5 = a's, s0

(d5 + 56%) f; = f(d5 + 63)
=ca (d(a"'s) + (¢ 'da+a '0a)(a"'s))

=e(ds + 0s),
where f = (f1,---, fr), e = (e1, -+ ,e.), so V is globally defined.

Finally, we construct the unique Chern connection. )

If we define covariant derivatives of a smooth section s with respect to a complex tangent
vector X at a given point p by Vxs := X(Vs) € A°(E), where we use the dual pairing of tangent

vectors and differential 1-forms. Then the compatibility with metric takes the form

| X(h(s,t)) = h(Vxs,t) + h(s, Vg, 1)

note that the second component is X.

The line bundle case is particularly simple: if e is a local holomorphic frame and we set
h = h(e,e) > 0, then the connection 1-form is 6 = h='0h = dlogh . Then the curvature © =
df+ 0 A0=df = (0+9)(dlogh) = dlog h, which is a globally defined closed (1, 1)-form.

Now we study the property of the curvature of Chen connection : In general, the curvature of Chern

connection is locally given by
O=dI+0AN0=00+ (00 + 0 AN0),
note that form the compatibility with the complex structure implies that 6 is a (1,0)-form, so

=0 4+0%20 olt=00, 0*°=00+0n0.
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However, an important obeservation is , where we use the local expression of 6,

0> =90 +0n0
=0 (H'oH) + (H '0H) A (H '0H)
=OH 'ANOH + H'0°H + (H '0H) A (H '0H)
=-H'9H -H 'ANOH + (H '0H) A (H '0H)

=0

where H = h', and we use the classical trick 9(H - H~!) = 0 again, and 9’ H = 0.

So with respect to a local holomorphic frame we have © = ©:! is of type (1,1) , and locally
©=0(H'9H), H=h"

so we have the conclusion : For Chern connection on a holomorphic vector bundle, its curvature form

is always of type (1,1) |, regardless of whether the frame is holomorphic or not!

Now we calculate an example:

Example 4.2.1. Consider the universal line bundle U — CP", recall that
U = {([z],v)|v € [2]} € CP" x C"!.
We can define a natural Hermitian metric on U :
by (v, w) = (v, w)cntt.
We now compute this metric and its curvature using local trivializations: Take Uy = {[2]|2° # 0} for

1 n
({1’”_7§TL>: (;a"'a;)v

then then we can choose a local frame e, and e([z]) = ([z], (1,&Y,--- ,€™)), so we get

example, the coordinates are

h(e,e) =14 €+ + €],

and hence
1 L
260det,
1+‘£1’2+...+|§n‘2; f f

and furthermore, if we denote |£|* = |12 + - - - + |€"|2 for short, we have

0 =0logh =

& &g
1+[¢*  1+¢P

@zgalogh:—<

>dgi AdET |,
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4.3 Chern Classes of a Complex Vector Bundle

Before we introduce Chern classes, we need have a more precise understanding of curvature form ©, actu-
ally, since O(f§) = fOE, so we can view O as a linear transformation , so it is actually a End F —valued

2-forms, and now we need to give a brief introduction of the bundle EndFE .

Let E/ be a complex vector bundle of rank r over X, the bundle End E is defined to be
End E := |_| Endc(E,) = I_I Homc (E,, E;)
peEX peEX

as a set. If we have a natural trivialization of E, 7~ }(U) — U x C", equivalently, we choose a

local frame {e;}_,. Now we have an induced local frame for End E:

EZ']' S COO(U, End E), Eij(ek) = 5jkei .

Under this frame, we get a trivialization map:
7Y U) = U x M,(C),

where M,.(C) is the linear space of r x r complex matrices. The trivialization map is given by

p7zaz’jEij(p) = (p, (aif))-
(2]

A local section o = Z a;jFE;j € C°°(U,End E) can be identified with a M,.(C) valued smooth
,J
function A = (a;;) : U — M,.(C). So for a section s = s’e;, we have

os:=o0(s) = ZaijEij(Skek) = Zaij5j€i~
i,j 4,3

So under the trivilization, the action of o on s is just the matrix (a;;) times the column vector (s*) .
Now we change the local frame {e,} to e, = ageg, then we have a corresponding induced frame

Eag. Then for a local section ¢ € C°°(U, End E), suppose (b)) = (a5) L, if

o= Z caplap = ZEQBEQ67

a75 avﬁ

then we actually have

o(eg) = angea, o(eg) = zgaﬁga-
a,f a,p



4.3. CHERN CLASSES OF A COMPLEX VECTOR BUNDLE 53

so we get

Zgaﬁga =0 <agev> = ag Z Cuvep = Z agcwaj’éa,
a,B Iz H

and hence |¢ = a 'cal.

So a smooth section of End £ is given by a family of locally defined matrix-valued smooth functions

¢ : Up = M, (C), and when U; N U; # @, we have

—1
G = wij Cj@bij -

Similarly, End E-valued differential forms are locally given by
N
n= Z w; ® Aj,
i=1

where A; is a matrix-valued smooth function and wj is a smooth k—form on a trivilization neighborhood

U. To make it well-defined, we require that when we change the local frame by e, = age 3, we have
N
7=a‘na= Zwi ® (a1t A;a).
i=1

One now may feel confused about two definitions : matrix-valued form and matrix of diff forms ,

as above, a M, (C)-valued differential form can always be written as a r x r matrix of differential forms:

N

letn = Z w; ® A;. Now suppose A; = (AZB) with Agﬁ are smooth functions, then we have 4; =
i=1

Z A 3Faqp and hence

a718

n= Zwi ®A; = Zzwz & (AZBECY/B)
i i a,fB
= Z (Z wiAf)ﬂ) &® Eozﬁ

a,f )

= Z Nap @ Eozﬁ-
o,

This means that we can view 7 as a matrix whose («, ) —entry is precisely the differential forms 7,5 =

Z A’g sw;. One may still feel confused, now we give an example

)

25023 0 1 dz; 23023d21 + dzo
+ dZQ X - )
1 0 el 1 dz1 + e*1dz dzo

dz1 ®

wher left hand is matrix-valued form, and the right hand is matrix of differential forms.
Now we introduce two operators on End E'-valued differential forms , suppose n = 7,3 ® E,g3, S0

we define the trace of 7 is trny = Z Naa-

(%
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It is not hard to check the definition above equals to the definition below:

trn = Z(tr Az)wz

%

Another tool we shall use is the commutator, defined by

w® A,n® B]:=(wAn) & [A,B]|,

this is defined using the matrix-valued forms, but we can see that it is really a commutator in linear algebra
[A, B] = AB — BA, by using the matrix of differential forms, one can see that w ® A = wA = (Aypw),
and similarly  ® B = (Bagn), so

w® A,n® B] =wAAnB — (—1)%e@dem,p A4,

One can easily check and we will not offer a proof here.

We sometimes extend the definition: we define for the connection V,

[V,w® Als := V(w® As) — (—1)%e@y @ AAVs|

we generalize this definition is for the curvature form © .

Now we offer some technical lemmas:

Proposition 4.3.1

If V and Vs are two connections on E, then Vi — V3 € A'(End E).

Proof. Forany s € C*°(E), and f € C*°, we have

(Vi =V2)(fs) = f(V1—Va)s+dfs—dfs
= f(V1—=Vy)s,

then we finish the proof. &

Proposition 4.3.2

If P, @ are both End E-valued differential forms, then tr[P, Q] = 0.

Proof. Suppose P = w®A, and Q = n® B, then tr[P, Q] = tr(wAn®[A4, B]) = tr([A, B])(wAn) =0,

then we finish the proof, general case is from the linearity of two operators. )

Proposition 4.3.3: Second Bianchi identity

We have [V.0F] = 0, for any k& € N.
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Proof.  Simply note that © = V2, thus we have for any section s, [V,V?#]s = V(VZ)s —
(—1)2kVv2F(Vs) = 0, so we finish the proof easily. &

Now we pove that [V, ©] = 0 is our familiar 2nd Bianchi identity. In fact, let s = s’e; be a

local section of F, then from

0=[V,0]s = [V, 0 E!](s"es)
= V(0}se;) — @;Ef A (dsPey, + s'0Fey,)
= [ds? A ©F + s7dOk + ©%sT A OF — OF A (ds? + 075)]ey,

= 57[dO} + O} A 0 — OF A biley,
since {s’} is arbitary, so we have d® + 6 A © — © A @ = 0. In the Riemannian case,

. 1 . . .
) = S Rjpgda? Adat, 0 =y dat,

thus we can easily have
ViR da¥ AdaP Adz? =0,

JpPq

this is nothing but the more familiar formula

ViR + VRl + VRS, =0

For A € A*(End E), we have d tr(A) = tr[V, A].

Proof. First note that the left hand side is obviously independent of the connection. For the right hand

side, if we use another connection V', then we have
tr[V/, A] = r[V' — V, A] + [V, 4] = [V, 4],

where we use V/ — V € AY(End E), and tr[P, Q] = 0.
So we can in fact choose a trivial conncetion locally to carry out the computation: let Vo = d be a

trivial connection, where Ve; = 0 for the fixed frame, thus we have Vs'e; = ds’e;. Then
[Vo, Als = Vo(As) — (=1)%eA A A Vs
= Vo(Az-sjei) - (—1)deg(A)A§ Ads’e;
_ ij deg(A) 4i j
= d(A%s?)e; — (—1) gl )Aj A ds’e;

= (dA%)s’e; = (dA) - s,

so we have tr[V, A] = tr(dA) = d tr(A), then we finish the proof. )
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Now we have enough tools to talk about Chern-Weil theory : For any formal power series in one

variable f(x) = ag + a1x + - - -, we define

1f(©) :=ag+ @O+ +a,0" € A'(X)]

where recall © is a 2-form, so ©% = 0 for k > n.

For f as above, we have
l. drf(©) =0;

2. If V is another connection with curvature ©, there is a differential form n € A*(X) such

that trf(©) — trf(©) = d.

So the ‘ cohomology class ‘ of trf(©) is independent of the connection. We call it the characteris-

tic class of E associated to f, and tr f(©) the corresponding characteristic form of F associated

to fand V.

Proof. For the first conclusion, we have

n

dtrf(©) =V, f(©)] =D ax[V,0" =0,

k=1
where we used Bianchi identity in the last step.

For the second conclusion, we choose a family of conncetions V; := tV + (1 —1)V, then

i\

V; = - = V:— Ve A (End E),
so we actually have
A\ dvy .
Q; = & d AVi+ Vi A T —[Vt,Vt].

Now we can change have the following :

%trf(@t) =1tr <9tf/(9t)) =1tr ([Vt, Vt]f/(@t)>
= tr[V;, Vif'(©;)]  (Bianchi)
—dtr (v’tf’(@t)) ,

1
so we can conclude that trf(©) — trf(0) = d/ tr (th’(Gt)) dt. &
0

Example 4.3.1 (Chern Class). Now Chern class is a special case of charactristic class, by choosing

f(©) := det <Ir + f@) = exp <tr log <Ir + éf@))) ,
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so by Taylor expansion, we have f(0©) = 1+c1(E,V)+- -+ ¢, (E, V), where ¢;(E, V) € A%(X) are
called closed forms, whose cohomology class are all independent of V from the theorem above. These

are called Chern classes, for example, from

2 3
exp(tr log(I, + A)) = exp (tr (A_ A? + f; + .. ))

=1+4+1tr(A)+ <;(trA)2 — ;tr(A2)> +oe

wo we actually have

c1(B,V) = \éftr@, (B, V) = 8% ((tr)(02) — (110)?) |

Uus

Now we offer more propositions about Chern classes :

We can find a connction V such that all chern forms ¢ (E, V) are real.

Proof. Since the Chern classes are independent of the connection, so we can choose a metric h and

require that V is compatible with the metric. Choose a local unitary frame, so that h;; = d;;, then
0 = dh;; = dh(e;, ;) = OF0y; + 60% = 0} + 67,

in short, @7 = —6, this in turn implies that m ,andso ¢(F,V) = c¢(E,V). &

Now we shall prove that Chern classes are obstructions to the existence of global linearly indepen-

dent smooth sections:

If E — X is a smooth complex vector bundle of rank r, if there are k smooth sections
1, , 8, € C°(E) such that {s;(p)}¥_, are linearly independent everywhere, then we have

¢i(E) > 0fori>r—k.

Proof. consider £ =T @ E’ where T is trivial k—bundle. &
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4.4 Hermitian Metrics and Kéhler Metrics

Let X be a complex manifold of dimension n, we denote the canonical almost complex structure

by J. A Riemannian metric g on X is called Hermitian, if g is J—invariant, i.e.,

g(Ju, Jv) = g(u,v), Yu,v € TZ],RX,p c X.

As before, we extend g to 7CX as a complex bilinear form. For simplicity, we also denote

this bilinear form by g. Then we have
g(Tl’O,Tl’O) — g(JT1,07 JT].,O) — g(\/lel,O’ \/lel,O) — _g(T1,07T1,0>7

so g(T10, TH0) = 0 = g(T%!, T%1), then

h(Z,W) = g(Z,W)

defines an Hermitian metric on the rank n holomorphic vector bundle 71X = span{Q,1,--- ,0.n}.

For an Hermitian metric g on (X, J), we define the associated Kihler form w, by

wg(u,v) = g(Ju,v).

Note that we have
wg(u,v) = g(JU,,U) = g(‘]qu JU) = —Q(U, JU) = —Wg(U,u),

S0 wy is a real 2-form on X.

An Hermitian metric g on X is called Kihler metric, if dw, = 0. Its cohomology class in
HflR(X ) is called the Kihler class of g. If a complex manifold admits a Kéhler metric, we call

it the Kéhler manifold.

Recall the definition of sympletic manifold , which is a 2n smooth manifold, with a nonwhere
vanishing 2-form w and dw = 0, since we already have wy is a real 2-form, then by the definition of

Kéhler manifold, we know that Kéhler manifold is also a sympletic manifold .

Locally, if (2!, - - - , 2") is a holomorphic coordinate system, then g is determined by 9i; = 9(0i,0;),
0 o .
where 0; = R and 0; = ﬁ, since g;; = g;; = 0. Then we have

wg = \/—1gﬁdzi Adzi ,
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now we have

0 = dwy, = v—1dg;; A dz' A dzi

8 a_ —_ —
== 1294 4.k A dof A dad — v 12715 421 A d2l A dzd

6 k 6zl
=+v-1 Z Z (Orgi; — &gkj) dzF A dzt Adzd + Z Z (al—gl; - &jgﬂdzi Adzd A dg) ,
i k<i i<l

so being Kéhler mean that g;;5 have the additional symmetries :

n
Example 4.4.1. The Euclidean metric g = Z:(d:zZ ®dz’ + dy’ @ dy') of R?* =2 C" is a Kiihler metric,
=1
since we have

0 == (0 —V=10,), 0;

DN |

(69[:Z + \/78 )

ﬁ

then we have g;; = g(0;,0;) =

i, 0 =0;j, S0 Wy = E dz* Adz*, since the coeffcients are all con-

2

stans, then we know that dw, = 0.

To give more examples, note that to define a Kdhler metrics, it suffices to define its associated Ké&hler
form, since we have g(u,v) = g(Ju, Jv) = wy(u, Jv). So sometimes we will also say “ Let w, be a

Kaéhler metric ...”

Example 4.4.2. Let X = B(1) C C" be the unit ball, we define a Kihler metric:

Wy =V — 8810g =V—- gljdz Adz,

5 Ziz
here we have (g;3) = (1 — ot 1222

so it is indeed a Kdhler metric, this is called the complex hyperbolic metric.

), which is positive definite, and dw, = 0 since doo = 0,

Example 4.4.3. Let X = CP" with homogeneous coordinates [Z°, - - - , Z"], we define a Kihler metric:
J—1 _
Wy += ?83105% (12°P2 +---+12"?),

1t is easy to check that this is well-defined. It is called the Fubini-Study metric.

Remark. |However,

be non-trivial, for if not, [wy] = 0 then will be exact, so / wy = 0 by Stokes theorem, but this is
b's

, since, for example, H3,(X ) must

impossible since it is the multiple of the volume of X.
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Calabi-Eckmann manifolds, i.e., S?P*! x S2¢+1 are never Kéhler, where p, g > 1.

Proof. By Kunneth formula, and H'(S%*1) = H2(S?+1) = 0, we know H?(X) = 0. &

However, we still have a lot of Kdhler manifolds:

Proposition 4.4.1

If X is Kéhler and Y is a complex analytic submanifold of X, then Y is also Kéhler.

Proof. Let g be a Kidhler metric on X and ¢ : Y — X be the embedding map, then +*g is a Kéhler

metric on Y and the associated Kéahler form is just t*w,. &

Corollary 4.4.1

All projective algebraic manifolds are Kéhler.

Proof. Recall projective algebraic manifolds are the complex submanifolds of CP", then from Fubini-
Study metric we know that CP" is K&hler, so we finish the proof. &

In Riemannian geometry, normal coordinates are very useful in tensor calculations. The next the-
orem shows that being Kahler is both necessary and sufficient for the existence of complex analogue of

normal coordinates.



	Preliminaries
	Notes

	Complex Manifolds
	Complex Manifolds
	Vector Bundles
	Almost Complex Manifolds
	de Rham Cohomology and Dolbeault Cohomology

	Sheaf Theory
	Presheaves and Sheaves
	Sheaf Cohomology
	Fundamental Results for Sheaf Cohomology

	Differential Geometry of Vector Bundles
	Metrics, Connections and Curvatures
	Chern Connection on Holomorphic Vector Bundles
	Chern Classes of a Complex Vector Bundle
	Hermitian Metrics and Kähler Metrics


