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Preliminaries
1

1.1 Notes

Definition 1.1.1: Holomorphic Function

Let f = (f1, · · · , fm) : Cn → Cm, then f is holomorphic, if

∂ui

∂xj
=
∂vi

∂yj
,

∂ui

∂yj
= − ∂v

i

∂xj
, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n,

where f i = ui +
√
−1vi, we can also denote it as ∂f = 0.

Recall Cauchy integral formula for C

Theorem 1.1.1

SupposeΩ ⊆ C is a bounded domain, ∂Ω piecewiseC1 and is a Jordan curve, then let f ∈ C(Ω),

and for any z0 ∈ Ω, we have

f(z0) =
1

2π
√
−1

(∫
∂Ω

f(z)

z − z0
dz +

∫∫
Ω

∂f
∂z̄ (z)

z − z0
dz ∧ dz̄

)
,

then we have two special cases

1. If f is holomorphic, then we have

f(z0) =
1

2π
√
−1

∫
∂Ω

f(z)

z − z0
dz.

2. If f ∈ C1
0 (Ω) with compact support contained in Ω, then

f(z0) =
1

2π
√
−1

∫∫
Ω

∂f
∂z̄ (z)

z − z0
dz ∧ dz̄.

Proof. One can transfer it to the real version then use Grenn formula. ♣

Now we generalize it to the multi-complex variable :

Theorem 1.1.2

Suppose Ω ⊆ Cn, let f ∈ O(Cn), for any ξ ∈ Ω, let the polydisk be

Dr(ξ) := {(z1, · · · , zn) ∈ Cn : |zi − ξi| < ri},

1



2 CHAPTER 1. PRELIMINARIES

where ξ = (ξ1, · · · , ξn) and r = (r1, · · · , rn),then for Dr(ξ) ⊆ Ω, we have

f(ξ) =
1

(2π
√
−1)n

∫
|z1−ξ1|=r1

· · ·
∫
|zn−ξn|=rn

f(z1, · · · , zn)
(z1 − ξ1) · · · (zn − ξn)

dz1 · · · dzn.

Then compare to the single value function ,we have Taylor expansion:

Corollary 1.1.1

For any f ∈ O(Ω), ξ ∈ Ω, then there exists Dr(ξ) ⊆ Ω, such that

f(z1, · · · , zn) =
∑
α∈Nn

Cα(z − ξ)α, (z − ξ)α =

n∏
i=1

(zi − ξi)αi ,

where α = (α1, · · · , αn) and we also have

Cα =
1

(2π
√
−1)n

∫
|z1−ξ1|=r1

· · ·
∫
|zn−ξn|=rn

f(z1, · · · , zn)
(z1 − ξ1)α1+1 · · · (zn − ξn)αn+1

dz1 · · · dzn.

More precisely, we have

Cα =
1

(α1!) · · · (αn!)
· ∂α1+···αnf

∂(z1)α1 · · · ∂(zn)αn
.

Now we see something different

Theorem 1.1.3: Hartogs Extension

Let Ω ⊂ Cn be a domain, and n ≥ 2, K ⊆ Ω is compact, and Ω \ K is connected, let f ∈

O(Ω \K), then there exists f̃ ∈ O(Ω) such that f̃ = f on Ω \K.

Remark. when n = 1, the theorem dosen’t hold, since f(z) =
1

z
on C− {0} is a counterexample.

Proof. The main idea is to solve ∂̄ equation.

Firstly, we use cut off function to smoothly extend f , suppose K ⊂ U1 ⊂ U2 ⊂ Ω, then let ϕ ∈

C∞(Cn), and ϕ ≡ 0 on U1, and ϕ ≡ 1 on Cn \ U2, now we have ϕf ∈ C∞(Ω,C).

Goal : Find g ∈ C∞
0 (Ω,C), such that ∂(g − ϕf) = 0, beacuse given such g, let f̃ = ϕf − g,

we know that f̃ is holomorphic, and it equals to f on the boundary of Ω, then from the uniqueness of

holomorphic functions, note Ω \K is connected, so f = f̃ .

So we now construct g, let ui =
∂ϕ

∂z̄i
· f =

∂

∂z̄i
(ϕf) ∈ C∞

0 (Cn,C), then we have
∂ui
∂z̄k

=
∂uk
∂z̄i

, for

all i, k, then we can let

g(z1, · · · , zn) :=
∫∫

C

u1(τ, z
2, · · · , zn)

τ − z1
dτ ∧ dτ̄ =

∫∫
C

u1(τ + z1, z2, · · · , zn)
τ

dτ ∧ dτ̄ ,

Now to check our goal, it suffices to verify
∂g

∂z̄k
= uk and g has compact support, we omit them. ♣
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Definition 1.1.2: Meromorphic Function

A function f on Ω is called meromorphic if there exists open cover U = {Ui} of Ω, such that

f =
hi
gi
, hi, gi ∈ O(Ui),

and we denote the all meromorphic functions to beM(Ω).
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Complex Manifolds
2

2.1 Complex Manifolds

Definition 2.1.1

A complexmanifoldM is a differentiablemanifold admitting an open cover {Uα} and coordinate

maps ϕα : Uα → Cn such that

• (C1) ϕα : Uα → ϕα(Uα) is a :::::::::::::::
homeomorphism;

• (C2) wheneverUα∩Uβ 6= ∅, we have ϕα◦ϕ−1
β is a

:::::::::::::
biholomorphic map from ϕβ(Uα∩Uβ)

to ϕα(Uα ∩ Uβ).

Remark. From Daniel we know that
:::::::::::::
biholomorphic is equivalent to

:::::::
bijective and

::::::::::::
holomorphic.

Definition 2.1.2

1. Amap f :M → C from a complexmanifold is called a holomorphic function, if f◦ϕ−1
i ∈

O(ϕi(Ui)), for all i ∈ I , in this case, we write f ∈ O(M);

2. IfM,N are both complex manifolds of dimension n andm respectively, a map F :M →

N is called holomorphic if for all coordinate charts (U,ϕ) ofM and (V, ψ) ofN , the map

ψ ◦F ◦ϕ−1 is a holomorphic map on ϕ(U ∩F−1(V )) ⊆ Cn whenever U ∩F−1(V ) 6= ∅.

A holomorphic map with a
:::::::::::
holomorphic

:::::::
inverse is called biholomorphic.

Remark. We will define ”O” the holomorphic function sheaf later.

Example 2.1.1 (Some special complex manifolds).

1. Open subsets of Cn are complex manifolds;

2. Let {e1, · · · , e2n} be any fixed R−basis of Cn , and let

Γ := {m1e1 + · · ·+m2ne2n|mi ∈ Z}

be a lattice of rank 2n. Then we can define the quotient space Cn/Γ, it is a compact Haisdorff

space equipped with quotient topology. There is a natural complex manifold structure induced

from the quotient map on Cn/Γ, we call this complex mainfold a complex torus;

5



6 CHAPTER 2. COMPLEX MANIFOLDS

3. Let P ∈ C[z, w] be a polynomial of degree d. Define

C := {(z, w)|P (z, w) = 0}.

We call it an affine plane algebraic curve, now assume P is irreducible and
∂P

∂z
,
∂P

∂w
have no

common zeros on C, i.e.,∇P nowhere vanishes, and then C is a natural complex manifold, more

precisely, a non-compact Riemann surface.

Proof. The coordinates can be choosen in the following way: WLOG if
∂P

∂w
(z0, w0) 6= 0, then we

can apply the holomorphic version of implicit function theorem to find a neighborhoodB := B(z0, ε)×

B(w0, δ), and a holomorphic function g(z) such that U := C ∩B = {(z, w)|z ∈ B(z0, ε), w = g(z)},

we choose ϕ : U → C to be ϕ(z, w) = z, since w = g(z) so it is really a homeomorphism, and

furthermore, if
∂P

∂z
(z0, w0) 6= 0, we use w as local coordinate.

Now we consider the map on the intersection, if (z0, w0) ∈ Ui ∩ Uj with coordinate ϕi(z, w) = z,

ϕj(z, w) = w, then suppose from implicit theorem we have z = g(w) and w = h(z) on Ui ∩ Uj

then ϕi ◦ ϕ−1
j (w) = g(w), since g ◦ h and h ◦ g both identity, so g is bijective and holomorphic then

biholomorphic. ♣

More about Complex Tori

Let us consider the one-dimensional a bit more in detail. Suppose ω1, ω2 ∈ C∗, and ω1/ω2 /∈ R, we

denote Γ to be the discrete subgroup of C generated by ω1 and ω2,

Γ := ω1Z+ ω2Z = {mω1 + nω2|m,n ∈ Z} .

So we have C/Γ = C/ ∼, where z ∼ w if and only ∃m,n ∈ Z such that z = w +mω1 + nω2. We

use [z] to represent the equivalence class of z, and π is the quotient map, now we show in detailed that

C/Γ is a Riemann surface , i.e., a 1-complex manifold:

Firstly, we denote

δ = inf
(m,n) ̸=(0,0)

|mω1 + nω2| > 0,

then for arbitrary p ∈ C/Γ, let zp ∈ π−1(p), and

Wp = {w ∈ C||w − zp| < δ/2}, Up = π(Wp),

so by the definition of quotient map, and π|Wp is a homeomorphism , Up is open in C/Γ, so let

ϕp : Up →Wp ⊂ C

p 7→ (π|Wp)
−1(p),
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so we have {(Up, ϕp)} is an atlas, since ϕp ◦ ϕ−1
q (z) = z + ω for some ω ∈ Γ is holomorphic, then we

know that C/Γ is really a Riemann surface.

Now a natural question is Are those complex tori holomorphic isomorphic ? If not, can we give them

a classification ? Before we answer these questions, we offer some basic propositions:

Proposition 2.1.1

1. the quotient projection π : C→ C/Γ is a holomorphic covering map ;

2. For arbitrary two tori C/Γ1 and C/Γ2, they are diffeomorphism ;

3. Suppose f : C/Γ1 → C/Γ2 is a continuous(holomorphic) map, and f([0]) = [0], then

::::
there

::::::
exists

:::::::
unique

:::::::::::::::::::::::
continuous(holomorphic)

::::
map

:::::::::::
f̃ : C→ C, such that f(0) = 0, and

satisfies the following diagram:

C C

C/Γ1 C/Γ2

f̃

π1 π2

f

Proof. For 3, one can first lift f to a map from C/Γ1 to C, then define f̃ . ♣

Theorem 2.1.1

1. For arbitrary p ∈ C/Γ, there exists a holomorphic automorphism such that

fp : C/Γ→ C/Γ, fp(p) = [0];

2. Complex tori C/(ω1, ω2), C/(1, ω1/ω2) and C/(1, ω2/ω1) are isomorphic.

Proof. (1) Fixed zp ∈ π−1(p), define fp : C/Γ→ C/Γ, fp([w]) := [w− zp], then fp(p) = fp([zp]) =

[0], and it is not hard to check that fp is really a holomorphic automorphism.

(2) naturally condider f : C/(ω1, ω2)→ C/(1, ω1/ω2), f([z]) := [z/ω2]. ♣

So from the theorem above, whenwe classify the complex tori, it sufficies to consider a special case ,

i.e., Γ = (1, τ) and Imτ > 0. Suppose f : C/(1, τ) → C/(1, τ ′) is a biholomorphic, then from the

proposition above, we assume f([0]) = [0], andF : C→ C is the lift of f , and then F is also holomorphic ,

and satisfies F (0) = 0, π′ ◦ F = f ◦ π.

Now similarly, suppose G is the lift of f−1, so F ◦G and G ◦F are all the lift of identity, then from

:::
the

::::::::::
uniqueness

::
of

::::::
lifting, we know that F ◦G = id, G ◦ F = id . So F and G are the biholomorphism

from C to C. Recall a improtant and basic result :



8 CHAPTER 2. COMPLEX MANIFOLDS

Theorem 2.1.2: Aut(C)

If F : C→ C is biholomorphism, then F is linear, i.e., F (z) = az + b for some a, b ∈ C.

So since F (0) = 0, there exists γ 6= 0, and F (z) = γ · z, then we know that the biholomorphic

f : C/(1, τ)→ C/(1, τ ′) such as

f([z]) = [γz], ∀z ∈ C,

especially, we have

[0] = f([0]) = f([1]) = [γ],

[0] = f([0]) = f([τ ]) = [γ · τ ],

which implies that there exists a, b, c, d ∈ Z such that
γ = a · 1 + b · τ ′,

γ · τ = c · 1 + d · τ ′.

Now we write the formula above in the matrix form

γ ·

1

τ

 =

a b

c d

 1

τ ′

 , a, b, c, d ∈ Z.

Simarly, we consider f−1, then we obtain

γ−1 ·

 1

τ ′

 =

a′ b′

c′ d′

1

τ

 , a′, b′, c′, d′ ∈ Z.

So we actually have1

τ

 =

a b

c d

a′ b′

c′ d′

1

τ

 ⇒

a b

c d

a′ b′

c′ d′

 = I2.

where it comes from 1, τ is linearly independent. Since a, b, c, d and a′, b′, c′, d′ are all integers, then we

have det

a b

c d

 = ±1, and since Imτ > 0 and Imτ ′ > 0, so it is not hard to find ad − bc = 1. In

short, we have the following classification theorem:

Theorem 2.1.3

If C/(1, τ) and C/(1, τ ′) are complex tori with Imτ > 0 and Imτ ′ > 0, then they are biholomor-

phism if and only if there exists a, b, c, d ∈ Z such that τ ′ =
a+ bτ

c+ dτ
with ad− bc = 1.
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The Complex Projective Space

Definition 2.1.3

Let CPn denote the set of lines through the origin in Cn+1, a line l ∈ Cn+1 is determined by any

z 6= 0 ∈ l, so we can write

CPn = {[z] 6= 0 ∈ Cn+1}
/
z ∼ λz, ∀λ ∈ C.

More precisely, we define an equivalence relation on Cn+1 \ {0}: (z0, · · · , zn) ∼ (w0, · · · , wn)

iff ∃λ ∈ C∗ such that wi = λzi, for all i. The n−dimensional complex projective space CPn is

defined to be the space with
:::::::
quotient

::::::::
topology, it is compact and Hausdorff since it can be viewed

as a quotient space of sphere.

Now we choose holomorphic coordinate charts as follows: define Ui := {[z0, · · · , zn] ∈ CPn|zi 6=

0}, and define

ϕi : Ui → Cn, ϕi([z0, · · · , zn]) :=
(
z0
zi
, · · · , ẑi

zi
, · · · , zn

zi

)
∈ Cn.

It is trivially a homeomorphism, now we check the compatibility, on Ui ∩ Uj and ϕj(Ui ∩ Uj) =

{(w1, · · · , wn) ∈ Cn|wi 6= 0}, so we have

ϕi ◦ ϕ−1
j (w1, · · · , wn) = ϕ([w1, · · · , 1, · · · , wn]) =

(
w0

wi
, · · · , ŵi

wi
, · · · , 1

wi
, · · · , wn

wi

)
.

Remark. It is easy to check that CP1 is diffeomorphic to S2.

Definition 2.1.4: Complex Submanifolds

A closed subset N of a n−dimensional complex manifoldM is called a (closed) complex sub-

manifold of dimension k, if for any p ∈ N , we can find a compatible chart (U,ϕ) ofM such that

p ∈ U and ϕ(U ∩ Y ) = {(z1, · · · , zn) ∈ ϕ(U) ⊆ Cn|zk+1 = · · · = zn = 0} , one can check

that the restriction of such charts (we call them ”adapted charts”) toN makesN a complex man-

ifold and the inclusion N ⊆M is a
::::::::::::
holomorphic

::::
map.

Theorem 2.1.4

Any holomorphic function on a compact connected complex manifold should be a
:::::::
constant.

Proof. RecallMaximumPrinciple in chapter 1, i.e, letΩ ⊆ Cn be a domain, and if f ∈ O(Ω)∩C0(Ω),

then max
Ω
|f | can not be achieved at an interior point unless f is a constant.

SinceM is compact, thus for the holomorphic function f :M → C, there existsK ≥ 0, max
M
|f | =

K, suppose
::::::::::::::::::::::::::
M1 = {p ∈M ||f(p)| = K}, thus M1 is closed in M . Furthermore, for all p ∈ M1, con-
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sider a coordinate neighborhood (U,ϕ) of p, then |f ◦ ϕ−1| attains its maximum in ϕ−1(U), thus from

maximum principle, we knows that f(U) = {f(p)}, thusM1 is open inM . NoteM is connected, and

:::
M1::

is
:::
an

:::::
open

:::
and

::::::
closed subset ofM , then we know thatM1 =M , i.e. f is a constant. ♣

From the theorem above, we have

Corollary 2.1.1

There are no compact complex submanifolds of Cn of positive dimension.

Proof. suppose dimCM = k > 0, andM is a compact complex submanifols of Cn, then forall p =

(z1, · · · , zn) ∈ M ⊆ Cn, and since the inclusion map i : M ↪→ Cn is holomorphic, then ik : M → C,

and p 7→ zk is a holomorphic function, now from the theorem above, we know that ik is a constant, then

i(M) is a point in Cn, with dimension 0, a contradiction. ♣

Remark. This corollarymeans that we can not hope there is something likeWhitney embedding theorem

such that every complex manifold can be viewed as a submanifold of CN , where N is sufficient large.

But fortunately, the complex projective space CPn can be the new target space to be embedded in.

Those non-compact complex manifolds with admit proper holomorphic embeddings into CN for

some large N are precisely called Stein manifolds.

Projective Algebraic Manifolds

Definition 2.1.5

Let F1, · · · , Fk ∈ C[z0, · · · , zn] be a set of irreducible homogeneous polynomials of degrees

d1, · · · , dk respectively, then the set

V (F1, · · · , Fk) : = {z = (z0, · · · , zn)|F1(z) = · · · = Fk(z) = 0}
/
z ∼ λz

= {[z] = [z0, · · · , zn]|F1(z) = · · · = Fk(z) = 0}

is well defined and is called a complex projective algebraic variety.

If we assume that V (F1, · · · , Fk) is a ::::::::
complex

::::::::::::
submainfold

::
of

:::::
CPn, then it will be called a

projective algebraic manifold or Hodge manifold.

Remark. Note that homogenous means that Fi(λz) = λdiF (z) for all 1 ≤ i ≤ k.

Example 2.1.2. LetF be irreducible and homogeneous of degree d. If the only common zero of
∂F

∂z0
, · · · , ∂F

∂zn
in Cn+1 is (0, · · · , 0), then V (F ) is a complex submanifold of dimension

:::::
n− 1.

For example, V (zd0 + · · · + zdn) is a smmoth submanifold of CPn, called the Fermat hypersurface

of degree d.
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Proof. We check this on U0 = {z0 6= 0}, then V (F )∩U0 is the zero locus of the holomorphic function

F (1, z1, · · · , zn) ∈ O(U0), so from the implicit function theorem, it suffices to show that
∂F

∂z1
(1, z),

· · · , ∂F
∂zn

(1, z) have no common zeros on V (F ) ∩ U0, where z = (z1, · · · , zn).

We argue it by contracdiction, if not, then there exists z0 = (z01 , · · · , z0n) and

F (1, z01 , · · · , z0n) =
∂F

∂z1
(1, z0) = · · ·

∂F

∂zn
(1, z0) = 0.

By Euler’s theorem on homogeneous functions, we have

1 · ∂F
∂z0

(1, z0) + z01
∂F

∂z1
(1, z0) + · · ·+ z0n

∂F

∂zn
(1, z0) = d · F (1, z0) = 0,

This implies that
∂F

∂z0
(1, z0) = 0, then (1, z0) is a common zero of∇F inCn+1 different from (0, · · · , 0),

which is a contradiction. ♣

A generalization of submanifold is the following

Definition 2.1.6

A closed subset A of a complex manifoldM is called an analytic subvariety, if it is locally the

common zeros of finitely many holomorphic functions, i.e. for all p ∈ A, there is an open set

U ⊆M and f1, · · · , fk ∈ O(U) such that

A ∩ U = {z ∈ U |f1(z) = · · · = fk(z) = 0}.

An analytic subvariety A is called a hypersurface if it is locally the zero locus of a holomorphic

function. For example, the Fermat hypersurface.

Now we talk about the relation between submanifolds and subvarieties:

• A complex submanifold is always an analytic subvariety , since we can just chhoose U to be the

domain of the adapted chart and fi to be zk+1, · · · , zn.

• An analytic subvariety may locally be a complex submanifold , let A ⊆ M be an analytic sub-

variety, p ∈ A is called a regular point, if we can find open U ⊆ X and f1, · · · , fk ∈ O(U) such

that A ∩ U = {z ∈ U |f1(z) = · · · = fk(z) = 0} and rank∂(f1, · · · , fk)
∂(z1, · · · , zn)

(p) = k. In this case, A

is
::::::
locally near p a complex submanifold of dimension n− k.

The locus of regular points ofA is denoted byAreg, its complement inA is called the singular locus,

and its elements are called singular points of A.

And there is an amazing theorem about analytic variety and algebraic variety:
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Theorem 2.1.5: Chow’s Theorem

Complex analytic subvarieties of CPn are algebraic.

Roughly speaking, when one see the words below in the left column, the words in the right column

should appear in one’s mind.

Variety ←→ Zero Locus

Algebraic ←→ Homogeneous Polynomial

Analytic ←→ Holomorphic Function

Existence of Complex Structures On a Given C∞ Manifold

Proposition 2.1.2

A complex manifold is an
::::
even dimensional

:::::::::
orientable differential manifold.

Proof. Recall the definition of an orientable real manifold, i.e. there exists an atlas {Ui, ϕi} such that

whenever Ui∩Uj 6= ∅, then detJφi◦φ−1
j
> 0, since for complex manifoldM the transition map ϕi ◦ϕ−1

j

is holomorphic in Cn, then it suffices to show that for holomorphic f , detJR
f > 0.

Actually, we will show that detJR
f = |detJC

f |2, suppose z = X +
√
−1Y and f = U +

√
−1V , then

from Cauchy-Riemann equation, we have

∂U

∂X
=
∂V

Y
,

∂U

∂Y
= − ∂V

∂X
.

Recall JC
f =

(
∂f i

∂zj

)
i,j

, and actually using
∂

∂z
=

1

2

(
∂

∂x
−
√
−1 ∂

∂y

)
, thus

∂f i

∂zj
=

1

2

(
∂

∂xj
−
√
−1 ∂

∂yj

)
(ui +

√
−1vi)

=
∂ui
∂xj
−
√
−1∂u

i

∂yj
,

where the last equation we use the Cauchy-Riemann equation, so we have

JC
f =

∂U

∂X
−
√
−1∂U

∂Y
,

hence we know that

detJR
f = det

 ∂U

∂X

∂U

∂Y
∂V

∂X

∂V

∂Y

 = det

 ∂U

∂X

∂U

∂Y

−∂U
∂Y

∂U

∂X


= det

 JC
f

∂U

∂Y

−
√
−1JC

f

∂V

∂Y

 = det

JC
f

∂U

∂Y

0 JC
f


= |detJC

f |2.
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Finally we finish the proof. ♣

Example 2.1.3. RP2n can never be viewed as a complex manifold.

However, for a given even dimensional oriented manifold, it is not always clear whether or not we

can make it a complex manifold.

But there are topological obstructions to almost complex structure, this can rule out all even di-

mension spheres except S2 and S6, we already knew S2 is a complex manifold, but the S6 case is still

open, more details can be found here .

Calabi–Eckmann Manifolds

Theorem 2.1.6

We can make S2p+1 × S2q+1 into a complex manifold.

The idea is that we can write

S2p+1 =

{
z ∈ Cp+1

∣∣∣∣∣
p∑
i=0

|zi|2 = 1

}
, S2q+1 =

{
z ∈ Cp+1

∣∣∣∣∣
q∑
i=0

|zi|2 = 1

}
,

and we have the Hopf fibration maps :

πp : S
2p+1 → CPn, πq : S

2q+1 → CPq,

each with fiber S1, i.e., S1 bundle, so if we consider the map

π = (πp, πq) : S
2p+1 × S2q+1 → CPp × CPq,

then we can view S2p+1 × S2q+1 as a fiber bundle on CPp × CPq , which is a complex manifold (Note

that the product of complex manifold is still a complex manifold), with fiber S1 × S1 = T 2.

Since the base space and the fiber can all be viewed as complex manifolds, so a natural idea is that

we may construct the complex chart using their charts. To be precise, we first consider Tours, fix a τ ∈ C

with Imτ > 0. We denote by T 2 = Tτ the complex torus C/〈1, τ〉.

Consider the open sets

Ukj := {(z, z′) ∈ S2p+1 × S2q+1|zkz′j 6= 0},

and using the coordinate map of CPp × CPq, we have the map

hkj : Ukj → CPp × CPq × Tτ
(φk,ψj)−→ Cp+q × Tτ

hkj(z, z
′) =

(
z0
zk
, · · · , ẑk

zk
, · · · , zp

zk
,
z′0
z′j
, · · · ,

ẑ′j
z′j
, · · · ,

z′q
z′j
, tkj

)
,

https://zhuanlan.zhihu.com/p/34631267
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where tkj(z, z′) :=
1

2π
√
−1

(log zk + τ log z′j) mod 〈1, τ〉, note here ”mod” to make log to be a single-

valued function.

Then using the coordinate map from Tτ to R2 then one can get the final coordinate map of S2p+1 ×

S2q+1. The compatibility may be trivial to verify, but I don’t know either.

Corollary 2.1.2: Kai Zhu

We can make RP2p+1 × RP2q+1 into a complex manifold.

Proof. I guess it is right, but I’m not sure. ♣
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2.2 Vector Bundles

Holomorphic Vector Bundle

Roughly speaking, a holomorphic vector bundle over a complex manifold is a family of vector spaces,

:::::::
varying

:::::::::::::::
holomorphically.

Definition 2.2.1

A holomorphic vector bundle of rank r over a n−dimensional complex manifoldM is a com-

plex manifold E of dimension n+ r, together with a holomorphic surjective map π : E → M

satisfying:

1. (Fiberwise Linear) Each fiber Ep := π−1(p) has the structure of r−dimensional vector

space over C;

2. (Locally Trivial) Thereis an open cover of M , U = {Ui}i∈I such that each π−1(U)i is

biholomorphic to Ui ×Cr via ϕi : π−1(Ui)→ Ui ×Cr, and Ep ↪→ π−1(Ui)→ Ui ×Cr

is a linear isomorphism onto {p} × Cr for any p ∈ Ui. ϕi is called a local trivialization.

A vector bundle of rank 1 is usually called a line bundle.

Whenever Ui ∩ Uj 6= ∅, we have a holomorphic map, called the transition map, ψij : Ui ∩ Uj →

GL(r,C) (viewed as an open subset of Cr2) such that

ϕi ◦ ϕ−1
j (p, v) = (p, ψij(p)v), p ∈ Ui ∩ Uj , v ∈ Ep.

Those families of transition maps satisfies the cocycle condition:

1. ψijψji = Ir on Ui ∩ Uj , i.e. Ir(p) = Ir;

2. whenever Ui ∩ Uj ∩ Uk 6= ∅, we have ψijψjkψki = Ir on Ui ∩ Uj ∩ Uk.

Remark. The name ”cocycle” is no coincidence. In fact we will see later that {ψij} above is indeed a

cocycle in Čech’s approach to sheaf cohomology theory. More precisely, we have

(δψ)ijk = ψjk ◦ (ψik)−1 ◦ ψij = ψjkψkiψij = Ir ⇐⇒ δψ = 0.

On the other hand, if we are given a set of holomorphic transition maps {ψij} : Ui∩Uj → GL(n,C)

satisfying the cocycle condition, we can construct a holomorphic vector bundle by setting

E =
⊔
i∈I

(Ui × Cr)
/
∼,

where (p, v) ∼ (q, w) for (p, v) ∈ Ui × Cr and (q, w) ∈ Uj × Cr iff p = q and v = ψij(p)w .
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Definition 2.2.2

Let π : E → M be a holomorphic vector bundle over M . Let U ⊆ M be an open set. A

holomorphic section of E over U is a holomorphic map s : U → E such that π ◦ s = idU ,

i.e., s(p) ∈ E(p) for any p ∈ U . The set of holomorphic sections over U is usually denoted by

Γ(U,O(E)) or O(E)(U). (Note that the notation comes from sheaf theory)

Remark. Roughly speaking, you can really view a section as a E−valued function.

M

E

s

p

Ep

sp

Figure 2.1: Fiber bundle and section

One of the fundamental problem for the theory of vector bundles is the construction of global holo-

morphic sections of a given bundle, and the main difficulty is
::::
there

::
is
:::
no

::::::::::::::::::::::::::
holomorphic partion of unity,

since if a holomorphic function has compact support then naturally it is contant 0.

An important tool is the L2-method for the ∂−equation. One can find the basics from Hormander’s

book. It is interesting that whether or not we can solve the equation depends on the geometry , in

particular, the curvature of the bundle .

Definition 2.2.3

Let πE : E → M and πF : F → M are holomorphic vector bundles of rank r and s resp. A

bundle map from E to F is a holomorphic map f : E → F such that

1. f maps Ep to Fp for any p ∈M ;

2. f |Ep : Ep → Fp is a linear.

When a bundle map has an inverse bundle map , we will say that two bundles are isomorphic.

Another fundamental problem is the classification problem. One important tool is the theory of

characteristic classes that we shall discuss later.
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Also the set of isomorphic classes of holomorphic vector bundles over a given complex manifold

has rich structures and is an
::::::::
important

:::::::::
invariant for the complex manifold.

Example 2.2.1 (trivial bundle). For complex manifold M then M × Cr with π : M × Cr → M is a

holomorphic vector bundle over M , called the product bundle over M , then the holomorphic bundle

that is isomorphic to X × Cr is called trivial bundle, denoted by Cr.

Example 2.2.2 (holomorphic tangent bundle). LetM be a complex manidold f dimension n. We shall

now construct its “holomorphic tangent bundle” TM as follows :

Let p ∈M , we first define the C-module

OM,p := lim
−→
OM (U) =

⊔
U∋p
OM (U)

/
∼,

where the direct limits is taken with respect to open sets with p ∈ U and the equivalent relation is given

by f ∈ OM (U) equivalent to g ∈ OM (V ) iff we can find another open set
:::::::::::::::
p ∈W ⊆ U ∩ V

:
such that

f |W = g|W , andOM,p is called the stalk ofOM at p, an element ofOM,p, i.e., a equivalence class [f ]

is called an germ of holomorphic function at p.

A tangent vector at p is a derivationX : OM,p → C , i.e., a C-linear map satisfying the Leibniz rule

Xp(fg) = Xp(f) · g(p) + f(p) ·Xp(g) .

The set of tangent vectors at p is easily seen to be aC−vector space. We call it the holomorphic tangent

space ofM at p, denoted by TpM .

If ϕi : Ui → Cn is a holomorphic coordinate chart with ϕi = (z1, · · · , zn). Then we can define
∂

∂zk

∣∣∣∣
p

∈ TpM to be

∂

∂zk

∣∣∣∣
p

(f) :=
∂(f ◦ ϕ−1

i )

∂zk
(ϕi(p)) ∈ C,

Then one can show that

{
∂

∂zk

∣∣∣∣
p

}n
k=1

is a basis of TpM , using the same way of real manifold.

Let TM =
⊔
p∈M

TpM , and define π : TM →M in the obvious way. We can make it a holomorphic

vector bundle as follows: Let (Ui, ϕi) be a holomorphic chart. Then we can define the local trivialization

ϕ̃i : π
−1(Ui)→ Ui × Cn to be

ϕ̃i

(
p, ak

∂

∂zk

∣∣∣∣
p

)
:= (p, a1, · · · , an).

This gives a complex structure on TM and at the same times gives a local trivialization of TM over Ui,

and if Ui ∩ Uj 6= ∅, then one can easily check if ϕi = (z1, · · · , zn) and ϕj = (w1, · · · , wn) then

ψij(p) = (ϕi ◦ ϕ−1
j )∗,p =

(
∂zl

∂wk
(ϕj(p))

)
(l,k)

.

A holomorphic section of TM over U is called a holomorphic vector field on U .
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Example 2.2.3 (holomorphic cotangent bundle). Any f ∈ OM,p defines a linear functional on TpM

by Xp 7→ Xp(f), we call this df |p ∈ (TpM)∗ =: T ∗
pM . T ∗

pM is called the holomorphic cotangent

space ofM at p. It is easy to see that if (Ui, ϕi) is a holomorphic chart, and ϕi = (z1, · · · , zn), then

{dzk|p}nk=1 is the baisis of T ∗
pM dual to

{
∂

∂zk

∣∣∣∣
p

}n
k=1

.

We can similarly give T ∗M :=
⊔
p∈M

T ∗
pM a holomorphic bundle structure as TM , called the holo-

morphic cotangent bundle ofM .

A holomorphic section of T ∗M over U is called a holomorphic 1-form on U .

Line Bundles

To have a better understanding of vector bundles, we need to start from some basic vector bundles, trivial

bundle is to boring, so the next interesting but not too hard objects are line bundles.

Let π : L→M be a holomorphic line bundle and {Ui}i∈I an open cover by trivialization neighbor-

hoods, and ϕi : π−1(Ui) → Ui × C the trivialization map. Since Gl(1,C) = C∗ , now the transition

map ψij : Ui ∩ Uj → C∗ become
::::::::::::
non-vanishing

::::::::::::
holomorphic

:::::::::
functions

:::
on

:::::::
Ui ∩ Uj .

Let s ∈ Γ(M,O(L)) , then ϕi◦s|Ui : Ui → Ui×C cou;d be represented by a holomorphic function

fi ∈ O(Ui), such that ϕi ◦ s|Ui(p) = (p, fi(p)) , note it is s|Ui since s is a global section.

When Ui ∩ Uj 6= ∅, since s|Ui = s|Uj on Ui ∩ Uj , we have fora any p ∈ Ui ∩ Uj :

(p, fi(p)) = ϕi ◦ s(p) = (ϕi ◦ ϕ−1
j ) ◦ ϕj(s(p))

= (ϕi ◦ ϕ−1
j )(p, fj(p)) = (p, ψij(p)fj(p)) .

So we have fi = ψijfj on Ui ∩ Uj , i.e., once we have a global holomorphic section s, there exists a

family of holomorphic functions fi ∈ O(Ui) satisfying this condition.

On the other hand, once we have such family of holomorphic functions {fi}i∈I , one can locally

define s|Ui , and from fi = ψijfj , we can :::::
patch

::::
s|Ui :::::::

together, it is easy to check the global s is actually

holomorphic, so
:::
the

:::::::::
condition

::::
and

:::
the

:::::::::
existence

::
of

::::::
global

::::::::::::
holomorphic

:::::::
section

::
is

:::::::::
equivalent.

Remark. Using the language of Čech cohomology, we have

∃ {fi}i∈I such that fi = ψijfj ⇐⇒ {ψij} is a coboundary,

since {ψij} is already a cocycle, this means that [{ψij}] = 0 in H2(M,O), so from this we know that

the the cohomology describes the obstructions to construct a global holomorphic section.

Example 2.2.4 (Universal line bundle over CPn). We define a holomorphic line bundle U → CPn as

follows: As a set,

U = {([z], v) ∈ CPn × Cn+1|v ∈ [z]},
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where we view [z] as the 1-dimensional subspace of Cn+1 determined by z. As one can easily check, we

can write

U = {([z], v) ∈ CPn × Cn+1|vizj − vjzi = 0, ∀i, j = 0, · · · , n}.

From this, it is easy to see thatU is a complex submanifold ofCPn×Cn+1 and hence a complex manifold.

The projection onto its first component CPn is clearly a holomorphic map, with fiber the 1-dimensional

linear subspace of Cn+1 generated by (z0, · · · , zn).

Now we check U is really a line bundle, thus for local triviality, we use the holomorphic charts

{Ui, ϕi}ni=0 defined before, recall Ui = {[z]|zi 6= 0}, and

ϕi([z
0, · · · , zn]) =

(
z0

zi
, · · · , ẑ

i

zi
, · · · , z

n

zi

)
,

thus on π−1(Ui), each v ∈ U[z], can be uniquely written as t ·
(
z0

zi
, · · · , 1, · · · , z

n

zi

)
, so we define

ϕ̃i([z], v) = ϕ̃i(z, t · v0) = ([z], t) ∈ Ui × C, vi0 =

(
z0

zi
, · · · , 1, · · · , z

n

zi

)
.

So we have {π−1(Ui), ϕ̃i} is the local triviality of Un, and note hard to see that the transition func-

tion on Ui ∩ Uj , then we have ψij([z]) =
zi

zj
, more precisely, suppose ϕ̃i([z], v) = ([z], ti), and

ϕ̃j([z], v) = ([z], tj), then we know ψij from the equation below

ψijtj · vi0 = ti · vi0 = v = tj · vj0.

Constructing New Bundles From Old Ones

The usual constructions in linear algebra all have counterparts in the category of vector bundles overM .

Let E,F be vector bundles overM of rank r and s respectively.

1. (Direct Sum)

The direct sum of E and F is a vector bundle of rank r+ s with fiber Ep ⊕Fp. Suppose {Ui, ϕi}

and {Vj , ψj} is local trivialization of E,F respectively, then WLOG there is a refinement of U

and V , and ϕi × ψj is the target trivilization.

Assumen the transition maps are ηij and γij respectively, then the transition maps for E ⊕ F are

precisely diag{ηij , γij} .

2. (Tensor Product)

The tensor product ofE and F is a vector bundle of rank rs with fiberEp⊗Fp. Now assumeE is

a general vector bundle and L is a line bundle, with transition maps ψij and ηij respectively, note

ψij ∈ Gl(r,C), and ηij ∈ C∗, thus the transition maps is ηijψij .
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Actually, we have a more general result, suppose ψij and ηij are the transition maps ofE,F resp.,

then for any (p, v ⊗ w) ∈ E ⊗ F , we have

vi ⊗ wi = Ψijvj ⊗ wj , vi = ψijvj , wi = ηijwj ,

so more precisely the transition maps of E ⊗ F is Ψij = ψij ⊗ ηij .

3. (Hom(E,F ))

Hom(E,F ) is a vector bundle of rank rs with fiber Hom(Ep, Fp). In particular, we define the

dual of E to be E∗ := Hom(E,C), whose fiber over p is exactly the dual space of Ep, i.e, the

(Ep)
∗. Since there is a natural isomorphism between V and V ∗, thus one can easily write the local

trivilization of E∗.

Now we consider the transition functions, suppose ψij is the transition maps of E, then from a

genreal linear algebra result:
::
If

::::::::
V

f→W
:::
has

:::::::
matrix

::
A,

:::::
then

::::::::::
W ∗ f∗→ V ∗

:::
has

:::::::
matrix

:::
AT. Thus we

konw that the transition maps of E∗ , Ψji = ψT
ij , so we have Ψij = (ψT

ij)
−1 .

In general, from linear algebra, we know that Hom(V,W ) ∼= V ∗ ⊗ W , one can check this by

writing all the basis down. So we naturally have Hom(E,F ) ∼= E∗ ⊗ F , thus from this we know

that the transition maps are precisely (ψT
ij)

−1 ⊗ ηij

Example 2.2.5 (The hyperplane bundle). Let U→ CPn be the universal line bundle, its dual is usually

denoted by H, we call it the hyperplane line bundle. Another common notation for H is O(1), which

comes from algebraic geometry. We also write the Hk, or O(k), short for the k-times tensor product of

H, i.e., Hk := H⊗ · · · ⊗H, and O(−k) := H−k = Uk.

Theorem 2.2.1: The section of hyperplane line bundle

Suppose Hk → CPn be the hyperplane line bundle, and k > 0, then

dimCΓ(CPn,O(Hk)) =

(
n+ k

k

)
.

Proof. Let s ∈ Γ(CPn,O(Hk)), then from preceeding discusions, we recall two basic facts:

1. For a line bundle L with transition function {ψij}, then s is a global section if an only if there

exists fi ∈ O(Ui) such that ϕi ◦ s|Ui = (id, fi), and fi = ψijfj .

2. The transition function of U is ψij =
zi

zj
, then since H is the dual of U, then the transition maps

are
zj

zi
, furthermore, for the tensor product , the transition maps Ψij of Hk is actually

(
zj

zi

)k
.
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So from above, we know that s can be represented by fi ∈ O(Ui), where Ui = {[z] ∈ CPn|zi 6= 0}.

There fi’s satisfy the following equation

fi([z]) =

(
zj

zi

)k
fj([z]), z ∈ Ui ∩ Uj .

Pulling back to Cn+1−{0} we can view (zi)kfi([z]) as a homogenous function of degree k on Cn+1−

{zi = 0}, which is also holomorphic. Now the above compatibility conditionmeans that these (zi)kfi([z])’s

could be glued together to form a
:::::::::::
holomorphic

::::::::
function

::
F

:::
on

::::::::::::
Cn+1 − {0},

::::::::::::
homogenous

::::
with

::::::
degree

::
k.

By Hartogs extension theorem, it extends to a holomorphic function F ∈ O(Cn+1), and from the

homogeneity and continuity, we know that F (0) = 0. From this we easily conclude that F is a homo-

geneous polynomial of degree k.

On the other hand, it is easy to see that any homogeneous polynomial of degree k in C[z0, · · · , zn]

determines
::::::::
uniquely a holomorphic section of Hk. So we have

s ∈ Γ(CPn,O(Hk))
1,1←→ homogeneous polynomial of degree k ∈ C[z0, · · · , zn] ,

since the latter has basis (zi1)k1 · · · (zil)kl with k1 + · · ·+ kl = k, then given (i1, · · · , il), the numbers

of the positive integer solutions is
(
k−1
l−1

)
, and the tuple i1 < · · · < il’s number is

(
n+1
l

)
, then

dimCΓ(CPn,O(Hk)) =

k∑
l=1

(
k − 1

l − 1

)
·
(
n+ 1

l

)
=

(
n+ k

n

)
,

then we finish the proof, hope there is another way to calculate the dimension of the polynomial. ♣

Remark. If k < 0, then similary if there is a global section s, then theremust have a family of fi ∈ O(Ui)

such that
fi([z])

(zi)k
=
fj([z])

(zj)k
on Ui ∩ Uj , note

fi([z])

(zi)k
is still holomorphic on Cn+1 − {zi = 0}, thus we

can still glue them together and have a holomorphic function F on Cn+1 − {0}, but one can not extend

F to 0,
:::::
which

::
is

::::::::::::
contradicted

::
to

:::::::
Hartogs

:::::::::
extension

::::::::
theorem, then we know that fi must all vanish, thus

when k < 0, Γ(CPn,O(Hk)) = {0}.

Definition 2.2.4: The Picard group

The
::::::::::
isomorphic

:::::::
classes

::
of

::::::::::::
holomorphic

::::
line

:::::::
bundles over M is called the Picard group of M ,

and the group operation is given by

[L1] · [L2] := [L1 ⊗ L2] ,

and the unit element is C, and [L]−1 := [L∗], and the group is denoted by Pic(M).

For CPn, we have Pic(CPn) ∼= Z, and any holomorphic line bundle is isomorphic toO(k) for some

k ∈ Z. However, this is rather deep, we will need sheaf cohomology to prove it.
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5. (Wedge Product)

Let E be vector bundles overM of rank r, for k ∈ N and k ≤ r, the degree k wedge product of

E is a vector bundle ∧kE with fiber ∧kEp at p. The highest degree wedge product ∧rE is also

called the determinant line bundle of E, since its transition functions are precisely derψij .

6. (Pull back via holomorphic map)

Let E → M be a holomorphic vector bundle of rank r, f : N → M be a holomorphic map

between complex manifolds, then we can define a pull back holomorphic vector f�E overN . In

fact, we can simply define the total space of f∗E to be

f∗E := {(y, (x, v)) ∈ Y × E|x = f(y)},

and p : f∗E → Y is just the projection to its first component.

Now we describe f∗E via transition maps: if {Ui}i∈I is a trivializing covering ofM for E with

transition maps ψij : Ui ∩ Uj → GL(r,C), then we choose an open covering {Vj}j∈J such that

f(Vj) ⊆ Ui for some i ∈ I . We fix a map τ : J → I such that f(Vj) ⊆ Uτ(j).Then the transition

maps for f∗E with respect to Vs ∩ Vt, then the transition maps Ψst = ψτ(s)τ(t) ◦ f .
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2.3 Almost Complex Manifolds

One of our interested problems is :

When can we make a manifold into a complex manifold ?

Recall the reason we want to study manifold is to generalize calculus, so the differention and integra-

tion are the most improtant, thus when given a real even oriented manifold, before we give it a complex

structure, we need to firstly make its tangent space into a complex vector space , if not, we can not even

define what is
√
−1 !

Generally, for a 2n real vector space,
√
−1 is actually an endomorphism

Definition 2.3.1: complex structure on real vector space

If V is a real vector space of dimension 2n, then we call a
::::::::
R−linear

:::::
map J : V → V such that

J2 = −id is a complex structure on V .

Remark. If V have a complex structure, then V can be regarded as a C−vector space by defining

(a+ b
√
−1)v := av + bJv, ∀a, b ∈ R, v ∈ V,

actually J always exists and not unique, for a basis ei = (0, · · · , 1, · · · , 0), one can check that for

arbitary P ∈ GL(2n,R), if J can be represented by the matrix

P−1diag


 0 1

−1 0

 , · · · ,

 0 1

−1 0

P,

then J is actually a complex structure on V .

Now for a 2n real oriented manifold, for p ∈ M , we can define a real tangent vector at p and the

corresponding real tangent space at p, TR
p M . In terms of coordinate chartϕ = (x1, y1, · · · , xn, yn), we

have TR
p M = spanR{∂xi |p, ∂yi |p}ni=1.We can give

⊔
TR
p M a structure of R-vector bundle of rank 2n,

called the real tangent bundle ofM , and denoted by TRM .

Now we hope we can make the tangent space into a complex vector space, thus

Definition 2.3.2: Almost complex manifold

LetM be a real orientable differential manifold of dimension 2n. An almost complex structure

onM is a bundle map J : TRM→TRM satisfying J2 = −id. And a real manifold with such

almost complex structure is called almost complex manifold.
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Remark. If one ignore the ”bundle map” condition, one may think each manifold is almost complex

manifold, since we can always define J2
p = −id at TR

p M . But the truth is that J the bundle map actually

is a (1, 1) tensor field, thus it depends smoothly on p ∈M .

Globally, having an almost complex structure means that one can define the Jp in any patch and

::::
glue

:::::
them

::::::::
together

:::::::
without

::::::::::::
encountering

:::::::::::
obstructions

:::
or

:::::::::::
singularities. There are examples where such

obstructions appear; the most notable is the four-sphere S4. It is known not to allow for an almost

complex structure (see e.g. Steenrod, 1951), hence S4 is not an almost complex manifold.

Theorem 2.3.1

Complex manifolds are almost complex.

Proof. Naturally, for a complex manifold, locally we have a coordinate chart (z1, · · · , zn), and holo-

morphic tangent bundle T hM , with basis

{
∂

∂zk

∣∣∣∣
p

}n
k=1

, then suppose zk = xk +
√
−1yk, then we can

viewM as a real 2n oriented manifold with local coordinate (x1, y1, · · · , xn, yn), then we define

J : TRM → TRM, J
∂

∂xk
=

∂

∂yk
, J

∂

∂yk
= − ∂

∂xk
,

one can easily check J is really a bundle map, thus is a almost complex structure. ♣

Definition 2.3.3

If an almost complex structure is induced from a complex structure , we will call it integrable.

Example 2.3.1. For S2, we can define J : TRS2 → TRS2 as follows: we identify TR
x S

2 with the

subspace ofR3:TR
x S

2 ∼= {y ∈ R3|x·y = 0}. Then we can define Jx : TR
x S

2 → TR
x S

2 by Jx(y) := x×y.

On can check that this is an integrable almost complex structure, induced by the complex structure of

S2 ∼= CP1, and J actually means the rotation of 90◦ clockwise.

O

x

TxS
2

y

x× y
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Example 2.3.2. For S6, we have a similar almost complex structure given bywedge product inR7. Note

that the wedge product in R3 can be defined as the product of purely imaginary quaternions. To define

this wedge product in R7, we shall use Cayley’s theory of octonions.

We write H ∼= R4 the space of quaternions q = a+ bi+ cj + dk with a, b, c, d ∈ R, satsifying

i2 = j2 = k2 = −1

and

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Then this multiplication is still associative but not commutative. For q ∈ H, we define q̄ := a − bi −

cj − dk, then |q|2 = qq̄.

Now we define the space of octonians, O ∼= R8, as O := {x = (q1, q2)|q1, q2 ∈ H}. The multipli-

cation is defined by

(q1, q2)(q
′
1, q

′
2) := (q1q

′
1 − q̄′2q2, q

′
2q1 + q2q̄′1).

We also define x̄ := (q̄1,−q2), then we still have xx̄ = x · x = |x|2, here the · means the ususal inner

product in R8. Note this multiplication is even not associative.

We identify R7 as the space of purely imaginary octonians. If x, x′ ∈ R7, we define x × x′ as the

imaginary part of xx′. Then we can check that xx = −|x|2, x × x′ = −x′ × x, and (x × x′) · x′′ =

x · (x′ × x′′).

From this, one can define an almost complex structure on S6 ⊆ R7 in a similary way as S2: identify

TxS
6 with {y ∈ R7|x · y = 0}, then define

Jx(y) := x× y.

One can prove that this almost complex structure is not integrable. (Ref: Calabi: Construction and

properties of some 6-dimensional almost complex manifolds)

Remark. For spheres of even dimension 2n, it is known (Borel-Serre) that there are no almost complex

structures unless n = 1, 3. A modern proof of this fact using characteristic classes can be found in P.

May’s book on algebraic topology. It is generally believed that there are no integrable almost complex

structures on S6, however S.T. Yau has a different conjecture saying that one can make S6 into a complex

manifold. This is still open.

Now we return back to the discussion about complexified the tagent space, it is easiliy to be found

that the way we complexify is not quite well ,because we use J as
√
−1, but we hope the coordinate is

z, and there is no z in our previous discussion.

https://www.jstor.org/stable/1993108
https://www.jstor.org/stable/1993108
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So now to make the coordinate from (x1, y2, · · · , xn, yn) to (z1, · · · , zn), note that if the manifold

is holomorphic, then there is no need to consider z, but now we only have smoothness, so we just simply

complexify V to get VC := V ⊗ C. We also extend J C−linearly to VC, again J2 = −id.

There is a direct sum decomposition of VC = V 1,0 ⊕ V 0,1, which are eigenspaces of J resp. In fact

we have a very precise description of V 1,0 and V 0,1:

V 1,0 = {v −
√
−1Jv|v ∈ V }, V 0,1 = {v +

√
−1Jv|v ∈ V } .

Now apply this to (TRM,J) for a manifold with an almost complex structure: define the complex-

ified tangent bunlde to be TCM := TRM ⊗R C and we have the decomoposition TCM = T 1,0M ⊕

T 0,1M , which are the
√
−1 and

√
−1 eigenspaces of J , respectively.

When J is integrable , T 1,0M is locally generated by
{

∂

∂zk

} ∣∣∣n
k=1

, so we can identify it with T hM ,

the holomorphic tangent bundle of complex manifoldM .
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2.4 de Rham Cohomology and Dolbeault Cohomology

From now on , we will always assumeM is a complex manifold, and now we consider the holomor-

phic cotangent space
∧p,q T ∗M , which is locally generated by

dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq ,

we denote the smooth sections of
∧p,q T ∗M over an open set U is denoted by Ap,q(U), and

Ak(U) = Γ

(
U,

k∧
T ∗M

)
= Γ

U, ⊕
p+q=k

p,q∧
T ∗M

 .

Definition 2.4.1

Naturally, we can define the exterior differential operator d : Ak(U) → Ak+1(U), and further-

more, we define the operators

∂ := Πp+1,q ◦ d : Ap,q(U)→ Ap+1,q(U)

and

∂ := Πp,q+1 ◦ d : Ap,q(U)→ Ap,q+1(U),

where Πp,q is the projection maps from Ap+q(U) to Ap,q(U).

Remark. When the beginner firstly meet these three operators may be quite confused, why we define

such ∂? Formally, it is not wrong to view zk and zk just 2n different variables, then ∂ and ∂ seem just to

distinguish those two kinds of variable, why? This is because the definition of holomorphic, we always

hope one thing f is holomorphic ,then we need ∂f = 0, i.e, to avoid A0,q things occur.

Now a smooth section of
∧p,q T ∗M over a coordinate open set U is of the forms

η =
∑

1≤i1≤···≤ip≤n,1≤j1≤···≤jq≤n
ai1···ip,j̄1···j̄qdz

i1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq ,

where ai1···ip,j̄1···j̄q ∈ C∞(U ;C) . we write η =
∑

|I|=p,|J |=q

aIJ̄dzI ∧ dzJ̄ ∈ Ap,q(U) for short.

In this case, we have

dη =
∑
I,J

daIJ̄ ∧ dzI ∧ dzJ̄

=
∑
I,J

∂aIJ̄ ∧ dzI ∧ dzJ̄ +
∑
I,J

∂IJ̄ ∧ dzI ∧ dzJ̄

∈ Ap+1,q(U) ⊕ Ap,q+1(U).

So we always have d = ∂ + ∂ .
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Since we always have d2 = 0, we have 0 = ∂2 + ∂
2
+ (∂∂ + ∂∂), acting on Ap,q(M). Comparing

types, we get

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0.

We can define from these identities several differential cochain complexes:

1. (de Rham complex)

0→ A0(M)
d→ A1(M)

d→ · · · d→ A2n(M)→ 0.

From this we define the de Rham cohomology (with coefficient C)

Hk
dR(M,C) := Ker d|Ak(M)

/
dAk−1(M) .

Its dimension bk is called the k-th Betti number ofM .

2. (Dolbeault complex)

0→ Ap,0(M)
∂→ Ap,1(M)

∂→ · · · ∂→ Ap,n(M)→ 0.

From this we define the Dolbeault cohomology

Hp,q

∂
(M) := Ker ∂|Ap,q(M)

/
∂Ap,q−1(M) .

Its dimension hp,q is called theHodge number ofM , they are important invariants of the complex

manifold.

3. (Holomorphic de Rham complex)

0→ Ω0(M)
d=∂→ Ω1(M)

d=∂→ · · · d=∂→ Ωn(M)→ 0,

where Ω∗(M) locally generated by O(M) ⊗ {dzk}nk=1, since always we hvae ∂ : O(M) 7→ 0,

then d = ∂ + ∂ = ∂, we define the holomorphic de Rham cohomology

Hk
dR(X,Ω) := Ker

(
Ωk(M)

d→ Ωk+1(M)
)/

dΩk−1(M) .

The relation between these cohomology theories, as well as computational tools will be discussed

when we finish sheaf cohomology theory and Hodge theorem.



Sheaf Theory
3

3.1 Presheaves and Sheaves

Definition 3.1.1: Presheaf

A presheafF of abealian groups (or vector spaces, rings, etc.) over a topological spaceM con-

sists of an abelian group (or vector spaces, rings, etc.) Γ(U,F) = F(U) for
:::::
every open subset

U ⊂ M and a group homomorphism (resp. linear map, ring homomorphism,etc.) for each pair

V ⊂ U , rUV : F(U)→ F(V ) , called restriction homomorphism, satifying

1. rUU = idF(U) : F(U)→ F(U);

2. for anyW ⊂ V ⊂ U , we have rUW = rUV ◦ rVW : F(U)→ F(W ).

Remark. One who is familiar to the Category theory will quickly realize, the presheaf is actually a

contravariant functor from (M, ι) to Abel (or Vect, Ring,resp.), where the category of (M, ι) has the

objects : all of the open subsets ofM , and the morphisms: the inclusion map of ι : V ⊂ U .

Definition 3.1.2: Section, Stalk

An element of F(U) is uaually called a section of F over U . We also defined the stalk of F at

a point p ∈M to be

Fp := lim
−→
F(U) =

⊔
U∋p
F(U)

/
∼

where the direct limit is taken with respect to open sets p ∈ U , and s ∈ F(U) is equivalent to

t ∈ F(V ) iff we can find another open set p ∈ W ⊂ U ∩ V such that rUW (s) = rVW (t) . The

image of s ∈ F(U) in Fp is an ::::::::::
equivalence

:::::
class, denoted by sp, called the germ of s.

Example 3.1.1 (continuous function presheaf). For F = C0M , the presheaf of continuous function on

M . More precisely, C0M (U) is
:::
the

::::
ring

:::
of

:::
all

::::::::::
continuous

:::::
maps

:::::::::::
f : U → R, and the restriction homo-

morphisms are really the restriction.

And generally, one may call the stalk of C0M at a point p is the function germ, one should note that

they denote the same thing. And if sp = tp, then it does not only mean s(p) = t(p), instead, it is a much

sronger condition, means that we can find a neighborhood V of p such that s|V = t|V .

Now we continue the discussion of the presheaf C0M , the following two additional conditions are

naturally satisfied: We let U =
⋃
Ui be a union of open subsets Ui ⊂M , then

29
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1. If f, g ∈ C0M (U) with rUUi
(f) = rUUi

(g) for all i, then f = g ;

2. If functions fi ∈ C0M (Ui) are given for all i such that rUi
Ui∩Uj

(fi) = r
Uj

Ui∩Uj
(fj) for any j, then

we can patch them together, i.e, there exists a function f ∈ C0M (U) with rUUi
(f) = fi for all i.

Those propoerties are very essential, but not all presheaf can satisfy the conditions above, so now we

hope to study the better presheaf, we will use the propeties above as two more axioms:

Definition 3.1.3: Sheaf

A presheaf of abelian groupsF overM is called a sheaf, if it satisfies the following two prperties:

(S1) Assume we have a family of open sets Ui ⊂ U , i ∈ I and
⋃
i Ui = U . If s, t ∈ F(U)

satisfies rUUi
(s) = rUUi

(t) , for all i ∈ I , then s = t ;

(S2) Assume we have a family of open sets Ui ⊂ U , i ∈ I and
⋃
i Ui = U . If we also have a

family of sections si ∈ F(Ui), for all i ∈ I , satisfying rUi
Ui∩Uj

(si) = r
Uj

Ui∩Uj
(sj) whenever

Ui ∩ Uj 6= ∅, then there is a section s ∈ F(U) such that rUUi
(s) = si, for all i ∈ I .

Remark. Note that by (S1), the section in (S2) is also unique.

Example 3.1.2 (preshaef but not sheaf). LetG be a given abelian group, we define the constant presheaf

overM to be Gpre(U) := G for any non-empty open set U ⊂ M , and rUV = id for any non-empty pair

V ⊂ U . But generally, it is not a presheaf, for example, suppose M = U t V , then for s ∈ Gpre(U),

then it is actually a element in group G, and t ∈ Gpre(V ), with s 6= t, then from (S2), there exists g ∈ G

such that s = g = t, a contradiction.

There are more examples of sheaves on the complex manifoldM :

1. OX is the shaef of commutative rings of holomorphic functions overM , and OX(U) denotes the

holomorphic functions on U , we also call it the structure sheaf ofM .

2. E is the sheaf of commutative rings of smooth functions overM , and E(U) = C∞(U,C).

3. If π : E → M is a holomorphic vector bundle, and O(E) is the sheaf of all sections, more

precisely, O(E)(U) denotes the all holomorhic sections over U , it is actually a OX−module.

Definition 3.1.4: Sheaf Homomorphism

Let F and G be two (pre)sheaves. A (pre)sheaf homomorphism ϕ : F → G is given by group

homomorphisms for each U open, ϕU : F(U)→ G(U), such that whenever V ⊂ U , we have

(rG)UV ◦ ϕU = ϕV ◦ (rF )UV .
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Remark. More precisely, we have the a commutative diagram:

F(U) G(U)

F(V ) G(V )

φU

(rF )UV (rG)UV

φV

Once a homomorphism ϕ : F → G of (pre)sheaves of abealian groups is given, one constructs the

associated presheaves Kerϕ, Imϕ and Coker(ϕ) which are defined in the obivious way, for example

Coker(ϕ)(U) := Coker(ϕU : F(U)→ G(U)) = G(U)/ImϕU .

But one should note that they are all presheaves, but only Ker(ϕ) in general is a sheaf, but Im(ϕ)

and Coker(ϕ) aren’t.

Proof. Why Ker(ϕ) is a sheaf ? Now we check by definition:

(S1) Assume U =
⋃
i Ui, and we have a section s ∈ Ker(ϕ)(U) := K(U), and for each i ∈ I , we have

(rK)UUi
(s) = 0,

since we have a natural presheaf homomorphism, induced from the inclusion ι : K → F ,

K(U) F(U)

K(Ui) F(Ui)

ιU

(rK)UUi
(rF )UUi

ιUi

and then we note that s ∈ K(U), naturally ιU (s) = s ∈ F(U) , so we have

(rF )UUi
(s) = (rF )UUi

◦ (ιU )(s) = ιUi ◦ (rK)UUi
(s) = 0,

then from F is a sheaf, then we know that s = 0, then K satisfies the sheaf axiom I.

(S2) Now we assume si ∈ K(Ui) = Ker(ϕUi), and (rK)
Ui
Ui∩Uj

(si) = (rK)
Uj

Ui∩Uj
(sj), so we have

(rK)Ui
Ui∩Uj

◦ ιUi(si) = (rK)
Uj

Ui∩Uj
◦ ιUj (sj)

⇒ ιUi∩Uj ◦ (rF )
Ui
Ui∩Uj

(si) = ιUi∩Uj ◦ (rF )
Uj

Ui∩Uj
(sj)

⇒ (rF )Ui
Ui∩Uj

(si) = (rF )
Uj

Ui∩Uj
(sj) ,

the last equation comes from the injectivity of ιUi∩Uj , then since F is a sheaf, then there exists

a section s ∈ F(U), such that (rF )UUi
(s) = si, naturally one can show that ϕU (s) = 0 then

s ∈ K(U) simiarly, we omit the last proof since it is boring and trivial.
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Finally we show Ker(ϕ) is really a sheaf. ♣

Remark. One may feel afraid of sheaf since it may be too abstract for the beginner, but one should note

that, whenever we use sheaf acting on an open set U , things turn to be quite clear and easy, because

now they are just group theory.

Now since there are a lot of presheaves which are not sheaves, so to get more sheaves, a natural idea

is to sheafificate the presheaves:

Theorem 3.1.1: Sheafification

For any presheafF overM , there is a unique (up to isomorphism) sheafF+ and a homomorphism

θ : F → F+ satisfying the following universal property:

F+

F G

∃! f+
θ

∀ f

i.e., for any sheaf G overM and any homomorphism of presheaves f : F → G, there is a unique

homomorphism of sheaves f+ : F+ → G such that f = f+ ◦ θ . If F is already a sheaf, then θ

is an isomorphism. F+ is called the shefification of F .

Remark. By universal property, if F+
1 with θ1 and F+

2 with θ2 are both the sheafifications of F ,

F+
1

F F+
2

f+1
θ1

θ2

f+2

then we know from the diagram that the induced f+1 and f+2 give the isomorphism, so the shefification

for any presheaf is unique .

Proof. The most direct proof is to define F+(U) explicitely: a map

s̃ : U →
⊔
p∈U
Fp

is an element of F+(U) if and only if:

1. π ◦ s̃ = idU , i.e. s̃(p) ∈ Fp for all p ∈ U , here π : Fp 7→ p ;

2. For any p ∈ U , there is an open neighborhood p ∈ V ⊂ U and a s ∈ F(V ) such that for any

q ∈ V , s̃(q) equals sq, the stalk of s at q.

Now we check that F+ is really the sheafification of F :
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(Step1) we will consturct a homomorphism θ : F → F+, recall when we define a homomorphism, we

actually define a group homomorphism for any F(U) , so it is suffices to define θU , thus for any

s ∈ F(U), then θU (s) = s̃, where for each p ∈ U , s̃(p) = sp .

Then we check that θ is really a homomorphism, i.e, for any V ⊂ U , to check θV ◦ (rF )UV =

(rF
+
)UV ◦ θU , then for s and ∀q ∈ V , they both equal to sq, so we know that it is a morphism.

(Step2) we will show that F+ is really a sheaf, using the morphism θ on can easily prove (S1) and (S2)

these two axioms, it is so similar to the proof of Ker(ϕ), so we omit here.

(Step3) we now show the universal property, similarly, we need to construct group homomorphism f+U for

each U open. Naturally, we define f+U (s̃) = f(s) ∈ G(U) , one should check the existence of s,

then the uniqueness is trivial to check.

Now we finish the proof, but one can see that I left so much things to be checked, because when I was

typing the proof, I gradually felt boring about it. ♣

Remark. One can define shefification from étalé space:

Definition 3.1.5

From F , we define a topological space, called the étalé space associated to F :

F̃ :=
⊔
p∈M
Fp.

We have a natural map π : F̃ →M . The topology on F̃ is given as follows: for any open subset

U ⊂M and an element s ∈ F(U), let

[U, s] := {sp | p ∈ U} ⊂ F̃

and they forms a baisis B of the topology.

Remark. One can refer GTM 81 for complete proof. Then for any open U ⊂ M , define F+(U) :=

{s : U → F̃ is continuous |π ◦ s = idU}.

Remark. If one still can not see sheafication, you should just remeber, a sheaf is completely determined

by its stalks, so the key point is F+
p = Fp , we only need to care the local information.

Example 3.1.3. For the constant presheaf Gpre over a manifoldM , denotes its sheafification G. Then

the elements ofG(U) consists of locally constant maps from U to the abealian group, and it is denoted

by constant sheaf. If you are confused with this concept, you can refer handwiki.

Example 3.1.4. LetM be a complex manifold, we define a presheafMpre overM as follows: for open

set U ⊂M , elements ofMpre(U) are quotients of holomorphic functions on U , with denominator not

https://handwiki.org/wiki/Constant_sheaf#:~:text=The%20constant%20sheaf%20associated%20to%20A%20is%20the,the%20category%20of%20abelian%20groups%2C%20or%20commutative%20rings%29.
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identically zero on any connected component of U . Its sheafificationM is the sheaf of meromorphic

functions. Elements ofM(U) are called meromorphic functions on U.

Example 3.1.5 (Skyscraper Sheaf). Suppose S is a presheaf of a fixed Top T1 space X , and fixed a

point p ∈ X , then define S(U) = G, if p ∈ U , otherwise S(V ) = {0}, and actually it is a sheaf, and

Sp = G, Sq = {0}, ∀q 6= p.

Proof. We check the sheaf axioms, suppose U = ∪Ui, for (S1), suppose s ∈ S(U), and s|Ui = 0, if

p /∈ U , then trivially s = 0, otherwise if p ∈ U and s ∈ G∗, then we know that s|Ui 6= 0, a contradiction.

Now we check (S2), if we have {si} and si|Uij = sj |Uij , then if U = ∪Ui ∪ Uj , and p ∈ Ui, p /∈ Uj

for all i, j, thus if there exists Uij 6= ∅, then si all equals to 0, so s = 0 is as desired, and the another

case is really trivial, so we omit. ♣

Example 3.1.6. Suppose U ⊂ C, then if f ∈ O(U), then fp is the Taylor expansion of f at p, andOp is

isomorphic to the convergent power seires at p.

Corollary 3.1.1

For bounded holomorphic function presheaf B, we have B+ = O.

Proof. The key point is B+p = Op, they are all isomorphic to the convergent power seires at p. ♣

Definition 3.1.6: Soft Sheaf

A sheaf F over X is called soft, if for any closed subsetK ⊆ X , the resrtiction map

F(X)→ F(K) := lim
−→
F(U)

where U takes the all open sets containK, is surjective .
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3.2 Sheaf Cohomology

In this section, we always assume X is a manifold and F is a sheaf of Abel.

Motivation:the Mittag-Leffler Problem

Sheaf is a useful tool to describe the obsructions to solve global problems when we can always solve a

local one. (Recall the discussion we made in finding a global holomorphic section for line bundle)

To illustrate this point more precisely, we come back to the Mittag-Leffler problem on a Riemann

surfaceM (Recall it is a complex manifold of dimension 1):

Problem 1. Suppose we are given finitely many points p1, · · · , pm ∈M , and for each pi we are given

a Laurent polynomial
ni∑
k=1

c
(i)
k z

−k. We can view this an element ofMp/Op. We want to find a global

mermorphic function onM whose

1. poles are precisely those pi’s

2. with the given Laurent polynomial as its principal part of pi.

This problem is always solvable locally : we can find a locally finite open covering U = {Ui|i ∈ I}

ofM such that each Ui contains at most one of the pi’s, and fi ∈ M(Ui) such that the only poles of fi

are those of {pi} contained in Ui with the principal part equals the given Laurent polynomial.

The problem is that we can not patch them together : if Ui ∩ Uj 6= ∅, there is no reason to have

fi = fj . So we have to define

fij := fj − fi ∈ O(Ui ∩ Uj) =: O(Uij)

and view the totality of these fij’s as the obstruction to solve the problem.

Now by our choiceof fi, fij ∈ O(Uij) is because there are no poles for fi and fj on Ui ∩ Uj , and

note that we have

fij + fji = 0 on Ui ∩ Uj

fij + fjk + fki = 0 on Ui ∩ Uj ∩ Uk

and we call this the cocycle condition and {fij} is a Čech cocycle for the sheaf O w.r.t. the cover U .

Now when can we solve the Mittag-Leffler problem on M? We can solve it if we can modify the

fi by a holomorphic function hi ∈ O(Ui) such that f̃i := fi − hi will patch together . (This is because

we only wish the principal part is as our desired, we do not really care about the holomorphic part)
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This means that f̃i = f̃j on Ui ∩ Uj , equivalently,

fij = hj − hi ,

naturally, {hi − hj} is also a cocycle for the sheaf O, but since hi’s are all holomorphic, we call them a

Čech coboundary. So we get the conclusion that we can solve the Mittag-Leffler problem if

the Čech cocycle {fij} is a coboundary.

Čech Cohomology

The discussion above motivates the introduction of the following Čech cohomology of a sheaf F with

respect to a locally finite cover U of X . We first define the chain groups:

Definition 3.2.1

Given sheaf F and locally finite cover U , we define

C0(U ,F) :=
∏
i∈I
F(Ui)

C1(U ,F) ⊂
∏

(i0,i1)∈I2
F(Ui0 ∩ Uj0)

· · ·

Cp(U ,F) ⊂
∏

(i0,··· ,ip)∈Ip+1

F(Ui0 ∩ · · · ∩ Uip)

· · ·

where {σi0···ip} is in Cp(U ,F) if and only if

1. whenever ik = il for some k 6= l, we have σi0···ip = 0;

2. For any permutation τ ∈ Sp+1, we have σiτ(0)···iτ(p) = (−1)sgnτσi0···ip .

U0 U1

U2

U01

U02
U12

U012

Remark. Note that we always define F(∅) = {0}, and write Ui0···ip
short for Ui0 ∩ · · · ∩Uip , one should always note that in our definition,

the σ ∈ Cp(U ,F) will have |I|!/(|I| − p − 1)! components, but in

most books, they only consider i0 < · · · < ip and thus have only( |I|
p+1

)
components.

Example 3.2.1. If X = D1 = {z||z| ≤ 1} and is covered by U

as right, so we have σ ∈ C0(U ,F), then σ = (σ0, σ1, σ2) , η ∈

C1(U ,F), then η = (η01, η02, η12) , γ ∈ C2(U ,F), then γ = (γ012).
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Definition 3.2.2: Coboundary Maps

We define the coboundary operator δ : Cp(U ,F)→ Cp+1(U ,F) to be :

(δσ)i0···ip+1 :=

p+1∑
j=0

(−1)j · (rF )
Ui0···îj ···ip+1

Ui0···ip+1

(
σi0···îj ···ip+1

)
.

Remark. One should not be afraid of this formula, since it is natural if you view rF just as the restriction,

more precisely, one can compare this formula with the one in singular homology.

Proposition 3.2.1

We have δ ◦ δ = 0, so we have a cochain complex {C∗(U ,F), δ} :

0→ C0(U ,F) δ→ C1(U ,F) δ→ · · · δ→ Cp(U ,F) δ→ · · · .

The proof is direct, we omit here and we can define the space of Čech p−cocycles

Zp(U ,F) = Kerδ ⊂ Cp(U ,F),

and the the space of Čech p−coboundaries

Bp(U ,F) = δCP−1(U ,F) ⊂ Cp(U ,F),

and the Čech cohomology with respect to U

Hp(U ,F) := Zp(U ,F)/Bp(U ,F) .

Now we study H0 and H1 more precisely :

• If [f ] ∈ H0(U ,F) = Z0(U ,F), then f = (fi)i∈I ∈ Z0(U ,F) is a cocycle, i.e., δf = 0, since

(δf)ij = r
Uj

Uij
(fj)− rUi

Uij
(fi) = 0

which means that rUj

Uij
(fj) = rUi

Uij
(fi), since fi ∈ F(Ui), thus from (S2), we get a global section f̃

and from (S1) the uniqueness, we know f = f̃ is a global section ,thus f ∈ F(X). So H0(U ,F)

is in fact independent of U and we have a canonical isomorphism

H0(U ,F) ∼= F(X) .

• If [g] ∈ H1(U ,F), then g = (gij) ∈ Z1(U ,F) is a cocycle, so from δg = 0, we actually have

fij + fji = 0 on Ui ∩ Uj

fij + fjk + fki = 0 on Ui ∩ Uj ∩ Uk

This is precisely the “cocycle condition” we met before. However, this time the cohomology may

depend on the cover
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Now we calculate a more precise example, and it comes from Bott Exercise 10.7:

S1

U0

U1

U2

Example 3.2.2 (Cohomology with Twisted Cofficients). Let F be the

presheaf on S1 which associates to every open set the group Z. We

define the restriction homomorphism on the cover U = {U0, U1, U2}

as the figure right by

r001 = r101 = 1,

r112 = r212 = 1,

r202 = −1, r002 = 1,

where riij denotes the restriction from Ui to Ui ∩ Uj . Now we calculateH∗(U ,F), recall we have

0→ C0(U ,F) δ→ C1(U ,F) δ→ 0→ · · · .

• For H0(U ,F) = Z0(U ,F), suppose f = (f0, f1, f2) ∈ C0(U ,F) = Z3,now we find δf :

(δf)01 = r101(f1)− r001(f0) = f1 − f0

(δf)02 = r202(f2)− r002(f0) = −f2 − f0

(δf)12 = r212(f2)− r112(f1) = f2 − f1,

so if δf = 0, then we have f1 = f0, f2+f0 = 0 and f2 = f1, which means that f0 = f1 = f2 = 0,

then we have f = 0, thus Kerδ = 0, then H0(U ,F) = 0 .

• For H1(U ,F) = C1(U ,F)/Imδ, and in Imδ, suppose h01 = f1 − f0, h02 = −f2 − f0, h12 =

f2 − f1, since h01 + h02 + h12 = −2f0 ∈ 2Z, thus we know that H1(U ,F) = Z2 .

Remark. One should note that the reason whyH0 6= F(S1) is because F is not a sheaf, here we define

the twisted restriction homomorphism is only for exercise!

Now we consider if there are two different covers :

Let V = {Vj}j∈J be a locally finite refinement of U . This means we have a map τ : I → J (not

unique) such that Vj ⊂ Uτ(j), then we have a homomorphism ΦU
V : Hp(U ,F)→ Hp(U ,F) induced by

Cp(U ,F)→ Cp(V,F), (σi0···ip) 7→
(
στ(j0)···τ(jp)

∣∣
Vj0···jp

)
.

One can prove that ΦU
V is in fact independent of the choice of the map τ .

The cohomology of X with coefficients sheaf F is defined to be the direct limit:

Hp(X,F) := lim
−→

Hp(U ,F) =
⊔
U
Hp(U ,F)

/
∼
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where two cohomology classes [(σi0···ip)] ∈ Hp(U ,F) and [(ηj0···jp)] ∈ Hp(V,F) are equivalent if we

can find a common refinementW of U ,V such that

ΦU
W
(
[(σi0···ip)]

)
= ΦV

W
(
[(ηj0···jp)]

)
.

Thus an element of Hp(U ,F) is an equivalent class of Čech cohomology classes, represented by

an element of Hp(U ,F), for some cover U . But in many cases, in particular all the sheaves we use in

this notes, there exists sufficiently fine cover U such that Hp(U ,F) ∼= Hp(X,F). (If one is familiar

with Bott Tu, then will soon realize it is similar to the good cover for smooth manifold)

Now before we end this section, we will give a more detailed discussion ofH1 :

Proposition 3.2.2

If V is a refinement of U , then ΦU
V : H1(U ,F) → H1(V,F) is injective, and hence so is the

induced homomorphismH1(U ,F)→ H1(X,F), i.e., we can simply write

H1(X,F) =
⋃
H1(U ,F) .

Proof. Let U = {Ui}i∈I , V = {Vα}α∈Γ and τ : Γ → I be a map such that Vα ⊂ Uτ(α), suppose we

have [(fij)] ∈ H1(U ,F) satisfies ΦU
V ([(fij)]) = 0. Then consider a common refinement of U and V

W := {Wiα := Ui ∩ Vα 6= ∅|i ∈ I, α ∈ Γ},

then we have ΦU
W([f ]) = ΦV

W ◦ ΦU
V ([f ]) = 0, this implies that (fij) is a cocycle, and

ΦU
W([f ]) = [(

(
fij |Wiα∩Wiβ

)
)] = 0 ⇒

(
fij |Wiα∩Wiβ

)
is a coboundary. So we can find hiα ∈ F(Wiα) such that onWiα ∩Wjβ , we have

fij |Wiα∩Wiβ
= hjβ − hiα.

Since naturally fii = 0 by definition, we must have 0 = hiα|Wiα∩Wiβ
− hiβ |Wiα∩Wiβ

. Since

{Wiα}α∈Γ is an open covering of Ui, by (S2), we can find a hi ∈ F(Ui) such that hi|Wiα = hiα.

Now consider the covering of Ui ∩ Uj by Ui ∩ Uj ∩ Vα =Wiα ∩Wjα , since

fij |Wiα∩Wiβ
= hj |Wiα∩Wiβ

− hi|Wiα∩Wiβ

= (hj |Ui∩Uj − hi|Ui∩Uj )|Wiα∩Wiβ

= (δ(hi))ij |Wiα∩Wiβ
,

then from (S1) the uniqueness, we have (fij) = δ(hi), equivalently, [(fij)] = 0, i.e, φUV is injective. ♣
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Now we finish our discussion about Picard group in §2.2

Theorem 3.2.1

Let X be a complex manifold, then we have Pic(X) ∼= H1(X,O∗), where O∗ is the sheaf of

nowhere vanishing holomorphic functions.

Remark. Recall Pic(X) is the holomorphic line bundle overX under isomorphism claasification.

Proof. Intuitively, the isomorphism comes from cocycle condition , now we offer more details

1. Given a holomorphic line bundle L with local trivializing U , we get a cocycle {ψij}, and ψij :

Ui∩Uj → GL(1,C) holomorphically, then we know that (ψij) ∈ O∗(Uij), furthermore, [(ψij)] ∈

H1(U ,O∗) ⊂ H1(X,O∗), from this we know Pic(X) ⊆ H1(X,O∗).

2. On the other hand, ifL is isomorphic toL′, we can assume that they have common trivializing cov-

erings U , with cocycles {ψij} and {ψ′
ij} resp. The bundle isomorphism map gives λi ∈ O∗(Ui),

such that ψ′
ijλj = λiψij (check !) , this implies that [(ψij)] = [(ψ′

ij)], from this we know that

Pic(X) = H1(X,O∗) .

One will also find that it is easily to verify this is actually a group isomorphism. ♣
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3.3 Fundamental Results for Sheaf Cohomology

Recall that a morphism f : F → G of sheaves over X induces for each point p ∈ X a homomorphism

of stalks: fp : Fp → Gp. We call a sequence of morphisms of sheaves an exact sequence if the induced

sequence on stalks is so for each pint p.

Theorem 3.3.1: Short exact sequence induces long exact sequence

If we have a short exact sequence for sheaves of abelian groups overX

0→ F f→ G g→ H→ 0,

then we have a long exact sequence for cohomologies

0 H0(X,F) H0(X,G) H0(X,H)

H1(X,F) H1(X,G) H1(X,H)

Hp(X,F) Hp(X,G) Hp(X,H)

· · ·

···

Before we prove this theorem, we need to firstly have a better understanding of the short exact

sequence, more precisely, we need
:::::
know

:::::
more

:::::
about

:::::
sheaf

::::::::
injective

::::
and

:::::::::
surjective

::::::::
morpism!

Definition 3.3.1

Suppose ϕ : F → G is a sheaf homomorphism, then we call it is

• injective, if the sheaf Kerϕ = 0;

• surjective, if the
::::::::::
sheafication Imϕ = G.

But the sheaf is not always convenient to use, then when we follow the main idea of sheaf: a sheaf

is completely determined by its stalks, we have the following

Proposition 3.3.1: or definition

TFAE (the following are equivalent):

• ϕ : F → G is injective;

• ϕU : F(U)→ G(U) is injective;
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• ϕp : Fp → Gp is injective.

Proof. The main reason has contained in the proof of the Kerϕ is sheaf. ♣

Proposition 3.3.2

TFAE (the following are equivalent):

• ϕ : F → G is surjective;

• For any τ ∈ G(U), there exists an open cover U = ∪Ui of U and si ∈ F(Ui) such that

τ |Ui = ϕUi(si);

• ϕp : Fp → Gp is surjective.

Remark. Generally, we can not have ϕU is surjective, an example isO exp→ O∗, the surjectivity strongly

depends on the topological information of U , i.e., the obstructions.

Remark. So in short, when we have a short exact sequence of sheaf 0 → F f→ G g→ H → 0, then

equivalently , we have

0→ Fp
f→ Gp

g→ HP → 0 , ∀p ∈ X,

and we have 0→ F(U)
fU→ G(U)

gU→ H(U) is exact, U ⊆ X and is open.

The proof of theorem 3.3.1 is quite long and boring, and it is not a good way for calculation, we will

use the corollary below more frequently:

Theorem 3.3.2: Abstract de Rham theorem

Suppose we have an exact sequence of the form :

0→ F → F0 ∂0→ F1 ∂1→ · · · → F i ∂
i

→ · · ·

where each sheaf F i satisfies Hp(X,F i) = 0 , for all p ≥ 1, this is called an acyclic resolution

of F , then H∗(X,F) is isomorphic to the cohomology of the cochain complex

0→ F0(X)
∂0X→ F1(X)

∂1X→ · · · → F i(X)
∂iX→ · · · ,

i.e, we actually have the isomorphism

Hp(X,F) ∼=
Ker

(
Fp(X)

∂pX→ Fp+1(X)

)
Im
(
Fp−1(X)

∂p−1
X→ Fp(X)

) .



Differential Geometry of Vector Bundles
4

4.1 Metrics, Connections and Curvatures

Definition 4.1.1: Hermitian Metrics

Let E → X be a complex (C∞) vector bundle of rank r over a smooth manifold X . A smooth

Hermitian metric on E is an assignment of Hermitian inner products

hp(·, ·) = 〈·, ·〉p

on each fiber Ep, such that for any smooth sections ξ, η over U , then h(ξ, η) ∈ C∞(U,C).

Remark. Recall Hermitian inner product h means that h(au, bv) = a · b · h(u, v) , i.e., it is C−linear

for the first component, and
::::::::
conjugate

:::::::::
C−linear

:::
for

::::
the

::::::
second.

Let U is a local trivialization neighborhood of E via ϕU : π−1(U)→ U ×Cr, then we can define r

smooth sections of E over U :

ei(p) := ϕ−1
U (p, 0, · · · , 0, 1, 0, · · · , 0), ∀1 ≤ i ≤ r.

Then at any point p of U , {ei(p)}ri=1 is a basis of Ep. We call {ei} a local frame of E over U .

Note that E is a holomorphic bundle and (U,ϕU ) a holomorphic trivialization, then these e′is are also

holomorphic sections, and we call it a holomorphic frame.

Using local frame, we have local representation of a metric , if ξ is a smooth section over U , then

we can write in a unique way ξ = ξiei, with ξi ∈ C∞(U ;C), the smooth complex valued function. Now

we define the smooth fuctions hij̄ := h(ei, ej), then we have

h(ξ, η) = h(ξiei, η
jej) = hij̄ξ

iηj .

Now compare to the Riemannian geometry, we need to define connections, since for real version,

∇XY is still a tangent vector, so actually, we can view ∇Y as a TM valued 1−form .

So now suppose π : E → M be a complex vector bundle onM , we denote by Ai(E) the sheaf of

i−forms with values in E, i.e.,

Ai(E)(U) := Ai(U)⊗ E,

and recall A0 = C∞, the smooth complex function, so for real manifold,

∇ : A0(TM)→ A1(TM), Y ∈ TM 7→ ∇Y = ωi ⊗ ∂i,

43
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where ωi and ∂i satisfies ωi(X)∂i = ∇XY .

Nowwe generalize this definition to vector bundle, themotivation is wewant to differentiate sections

ofE (view sections as functions, you will see this is really natural), but it cannot be realized cononically,

so we still need differential forms, a natural way is consider their tensors .

Definition 4.1.2: Connection

A connection on a smooth rank r complex vector bundle over a manifold X is a map ∇ :

A0(E)→ A1(E) which satisfies

1. ∇ is C−linear, i.e, ∇(aξ + bη) = a∇ξ + b∇η, for any ξ, η ∈ A0(E)(U);

2. (Leibniz rule) ∇(f ⊗ ξ) = df ⊗ ξ + f∇ξ, for any f ∈ A0(U), ξ ∈ A0(E)(U).

Remark. One should note that Ai(E) is a sheaf, so when we consider sections, they actuall live in

Ai(E)(U), but we usually omit them, one should be clear.

Now we have a local representation of a conncetion : If {ei} is a local frame, then we define a

family of local smooth 1−forms θji ∈ A
1(U) satisfying :

∇ei = θji ⊗ ej .

Sometimeswe just write∇ei = θji ej for short and omit the tensor operator, we call these {θ
j
i } connection

1-forms. More generally, for ξ = ξiei = ξi ⊗ ei, we have

∇(ξiei) = dξi ⊗ ei + ξi∇ei

= dξi ⊗ ei + ξiθji ej

= (dξi + ξjθij)⊗ ei.

Remark. Regard ξi as a column vector, and for θij as a matrix θ = (θij)(i,j), so formally ,we have

∇ξ = ∇


ξ1

...

ξr

 =


dξ1
...

dξr

+


θ11 · · · θ1r
...

...

θr1 · · · θrr

 ·

ξ1

...

ξr

 = (d+ θ)


ξ1

...

ξr

 ,

so if we identify ξ with the column vector ξi, then we can write ∇ = d+ θ (Physicists’ notation).

Now we can extend the action of∇ to bundle valued differential forms, i.e., we define∇ : Ai(E)→

Ai+1(E), more precisely we have

∇(ω ⊗ ξ) := dω ⊗ ξ + (−1)iω ∧∇ξ ,
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for any ω ∈ Ak(U), ξ ∈ A0(E)(U), and ω ⊗ ξ ∈ Ak(E)(U), one should note that ω ∧ ∇ξ actually

denotes that ω wedges the 1-form component of∇ξ .

Remark. one can see that∇ is really the generalization of d the exterior differential.

Definition 4.1.3: Curvature

We define the curvature of∇ to be Θ := ∇2 : A0(E)→ A2(E).

The most improtant property of curvature is the linearity of smooth functions, if f ∈ C∞, and

ξ ∈ A0(E), then we actually have

Θ(fξ) = ∇(dfξ + f∇ξ)

= d(df)ξ + (−1) · df ∧∇ξ + df ∧∇ξ + f∇2ξ

= fΘ(ξ).

Locally if we define the 2-forms Θj
i ∈ A2(U) by

Θ(ei) = Θj
i ⊗ ej .

Then we have

Θ(ξ) = Θ(ξiei) = ξiΘ(ei) = ξjΘi
jei.

Now we consider the local representation of the curvature , i.e., we represent Θi
j in terms of θij :

Θi
jei = ∇2(ej) = ∇(θljel)

= dθljel − θlj ∧∇el

= dθijei − θlj ∧ θilei

= (dθij + θil ∧ θlj)ei.

so we actually have

Θi
j = dθij + θil ∧ θlj .

or Θ = dθ + θ ∧ θ for short, here we view d acts on a martix as acts on each component .

Proposition 4.1.1: Curvature forms VS Curvature tensor

For any X,Y ∈ TM , we have Θ(ξ)(X,Y ) = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ .

Proof. It is known that the both sides are funtional linear for X,Y, ξ, so we assume X = ∂i and

Y = ∂j , ξ = eα, so we have Θ(ξ) = Θβ
αeβ , so Θ(ξ)(X,Y ) = Θβ

α(∂i, ∂j)eβ .
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Note that∇Y (ξ) = ∇ξ(Y ) = θβα(Y )eβ , so

∇(∇Y (ξ)) = ∇(θβα(Y )eβ)

= dθβα(Y )eβ + θβα(Y )∇eβ ,

then we know that

∇X∇Y ξ = (dθβα(Y ))(X)eβ + θβα(Y )θγβ(X)eγ

=
(
(dθγα(Y ))(X) + θβα(Y )θγβ(X)

)
eγ .

Thus we have (
∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

)γ
= dθγα(Y ))(X) + θβα(Y )θγβ(X)

− dθγα(X))(Y )− θβα(X)θγβ(Y )

− θγα([X,Y ])

= X(θγα(Y ))− Y (θγα(X))− θγα([X,Y ])

+ θγβ(X)θβα(Y )− θγβ(Y )θβα(X)

=
(
dθγα + θγβ ∧ θ

β
α

)
(X,Y ),

so from Θγ
α = dθγα + θγβ ∧ θ

β
α, we finish the proof. ♣

Remark. So one can see that the curvature form is really the curvature tensor in Riemanian geometry.

Now we changes the frame and give the transition representation : Suppose {fi} is another local

frame on U , then we can write

fi = ajiej ,

where (aji ) is a GL(r,C)−valued smooth function on U . (When both frames are local holomorphic

frames of a holomorphic bundle, then (aji ) is a GL(r,C)−valued holomorphic function on U .)

The new conncetion forms and curvature forms are denoted by θ̃ and Θ̃, we have

θ̃ji fj = ∇fi = ∇(a
k
i ek)

= daki ek + aki∇ek

= daki ek + aki θ
j
kej

=
(
daki + θkj a

j
i

)
ek,

and since the left hand side equals θ̃ji akj ek, so we have

akj θ̃
j
i = daki + θkj a

j
i ,
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and in matrix forms we have aθ̃ = da+ θa , i.e., we can write as following for short

θ̃ = a−1da+ a−1θa .

Now we consider changing frames of curvature : from the above formula, we get

Θ̃ = dθ̃ + θ̃ ∧ θ̃

= d
(
a−1da+ a−1θa

)
+
(
a−1da+ a−1θa

)
∧
(
a−1da+ a−1θa

)
= da−1 ∧ da+ da−1 ∧ θa+ a−1dθa− a−1θ ∧ da

+
(
a−1da+ a−1θa

)
∧
(
a−1da+ a−1θa

)
= −(a−1da · a−1) ∧ da−(a−1da · a−1) ∧ θa+ a−1dθa−a−1θ ∧ da

+(a−1da · a−1) ∧ da+(a−1da · a−1) ∧ θa+a−1θ ∧ da+ a−1θ ∧ θa

= a−1(dθ + θ ∧ θ)a = a−1Θa ,

where the main trick is the transition formula

da−1 = −a−1da · a−1 ,

where it comes from 0 = dIr = d(a · a−1) = da · a−1 + ada−1.

Remark. However, if we use local representation, we can have a shorter proof with the linearity of

curvature form:

Θ̃j
ifj = Θ̃(fi) = Θ(aki ek)

= akiΘ(ek) = akiΘ
j
kej ,

i.e., we have Θ̃j
ia
k
j = ajiΘ

k
j , note when we write it in martix component, we have akj Θ̃

j
i = Θk

ja
j
i , then

Θ̃ = a−1Θa .

Above the discussion, we know that Θ is invariant under similar transformation, so from Morita,

we know that, we want to study topological invariant of vector bundles , since curvature form, a r × r

matrix, with each component is a 2-form, although it may not be globally defined, but we can patch local

curvature together, if we find something invariant under similar transfomation of matrix , for example,

determinat and trace. So we have

Definition 4.1.4: Chern Form

We can construct a family of globally defined differential forms:

c(E,∇) := det
(
Ir +

√
−1
2π

Θ

)
:= 1 + c1(E,∇) + · · ·+ cr(E,∇),
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where ck(E,∇) ∈ A2k(X) is called the k−th Chern form of E associated to∇.

Remark. We will use Chern form to define Chern class later.

In physicists’ language , a connection is a field, the curvature is the strength of the field, and choos-

ing a local frame is called fixing the gauge. The reason for these names comes from H. Weyl’s work,

rewriting Maxwell’s equations. The vector potential and scalar potential together form the connection

1-form, and the curvature 2-form has 6 components, consisting the components of the electric field and

the magnetic field, and in short

Yang-Milles Theory

||

Differential Geometry of Vector Bundles
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4.2 Chern Connection on Holomorphic Vector Bundles

Since there are a lot of connections, we need to find the most speical and interesting one, like Levi-Civta

connection in Riemmanian geometry, so firstly, we consider holomorphic vector bundles , and then we

need the connection satisfying more necessary conditions:

Theorem 4.2.1: Chern Connection

On a given holomorphic vector bundle E with a smooth Hermitian metric h, there is a unique

connection∇, called Chern connection satisfying the following two additional conditions:

1. (Compatibility with the metric) If ξ, η are two smooth sections, then we have

dh(ξ, η) = h(∇ξ, η) + h(ξ,∇η). (4.1)

2. (Compatibility with the complex structure) If ξ is a holomorphic section of E, then∇ξ is

a E−valued (1,0)-form.

Remark. One may feel confused when see (4.1), but the fact is that h acts on E, and∇ξ is a tensor with

E and differential forms, so we generalize h so thta h(∇ξ, η) means that
:
h
::::
acts

:::
on

::::::::::
E−valued

::::
part and

η, the
::::::::::
differential

::::
part

::
of

:::::::::
h(∇ξ, η)

::
is

:::
the

::::::::::
differential

::::
part

:::
of

:::
∇ξ.

Proof. The proof naturally contains two parts, uniqueness and existence:

(Part1) Let {ei}ri=1 be a local holomorphic frame, and the connection 1−form with respect to this frame

is (θij)1≤i,j≤r, satisfying ∇ei = θji ej , since {ei} are all holomorphic sections, so from the com-

patibility with the complex structure, each θji is a smooth (1,0)-form.

Now we use the compatibility with the metric to get

dhij̄ = dh(ei, ej) = h(∇ei, ej) + h(ei,∇ej)

= h(θki ek, ej) + h(ei, θ
k
j ek)

= θki hkj̄ + θ̄kj hik̄

∈ A(1,0) +A(0,1),

and since dhij̄ = ∂hij̄ + ∂̄hij̄ , comparing the types, we have ∂hij̄ = θki hkj̄ , so we vae

∂h = θTh ⇒ θT = ∂h · h−1 ,

Denote h−1 = (hj̄i), then we can rewrite this as

θji = hk̄j∂hik̄. (4.2)
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Also, since h̄T = h, the (0,1)-part gives the same equation, this proves the uniqueness.

(Part2) For existence, we simply set locally θij := hk̄i∂hjk̄ on U , and define for s = siei:

∇s := (dsi + sjθij)ei,

and now we need to check that this is globally well-defined. For this, if fj = aijei is another

holomorphic frame on V with U ∩ V 6= ∅. Then a is a holomorphic matrix. Furthermore, we

have h̃ = aThā, this is because

h̃ij̄ = h(fi, fj) = aki ā
l
jhkl̄ = aki hkl̄ā

l
j ,

so we have the another connection forms are

θ̃ := (∂h̃ · h̃−1)T = a−1da+ a−1θa,

since s = s̃ifi, we have s := (s1, · · · , sr)T, and s̃ = (s̃1, · · · , s̃r)T then s̃ = a−1s, so

(ds̃i + s̃j θ̃ij)fi = f(ds̃+ θ̃s̃)

= ea
(
d(a−1s) + (a−1da+ a−1θa)(a−1s)

)
= e(ds+ θs),

where f = (f1, · · · , fr), e = (e1, · · · , er), so ∇ is globally defined.

Finally, we construct the unique Chern connection. ♣

Remark. If we define covariant derivatives of a smooth section s with respect to a complex tangent

vector X at a given point p by ∇Xs := X(∇s) ∈ A0(E), where we use the dual pairing of tangent

vectors and differential 1-forms. Then the compatibility with metric takes the form

X(h(s, t)) = h(∇Xs, t) + h(s,∇X̄ , t) ,

note that the second component is X̄ .

Remark. The line bundle case is particularly simple: if e is a local holomorphic frame and we set

h = h(e, e) > 0, then the connection 1-form is θ = h−1∂h = ∂ logh . Then the curvature Θ =

dθ + θ ∧ θ = dθ = (∂ + ∂̄)(∂ logh) = ∂̄∂ logh, which is a globally defined closed (1, 1)-form.

Now we study the property of the curvature of Chen connection : In general, the curvature of Chern

connection is locally given by

Θ = dθ + θ ∧ θ = ∂̄θ + (∂θ + θ ∧ θ),

note that form the compatibility with the complex structure implies that θ is a (1,0)-form, so

Θ = Θ1,1 +Θ2,0, Θ1,1 = ∂̄θ, Θ2,0 = ∂θ + θ ∧ θ.
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However, an important obeservation is , where we use the local expression of θ,

Θ2,0 = ∂θ + θ ∧ θ

= ∂
(
H−1∂H

)
+ (H−1∂H) ∧ (H−1∂H)

= ∂H−1 ∧ ∂H +H−1∂2H + (H−1∂H) ∧ (H−1∂H)

= −H−1∂H ·H−1 ∧ ∂H + (H−1∂H) ∧ (H−1∂H)

= 0

where H = hT, and we use the classical trick ∂(H ·H−1) = 0 again, and ∂2H = 0.

So with respect to a local holomorphic frame we have Θ = Θ1,1 is of type (1, 1) , and locally

Θ = ∂̄
(
H−1∂H

)
, H = hT.

so we have the conclusion : For Chern connection on a holomorphic vector bundle, its curvature form

is always of type (1,1) , regardless of whether the frame is holomorphic or not!

Now we calculate an example:

Example 4.2.1. Consider the universal line bundle U→ CPn, recall that

U = {([z], v)|v ∈ [z]} ⊂ CPn × Cn+1.

We can define a natural Hermitian metric on U :

h[z](v, w) := 〈v, w〉Cn+1 .

We now compute this metric and its curvature using local trivializations: Take U0 = {[z]|z0 6= 0} for

example, the coordinates are

(ξ1, · · · , ξn) =
(
z1

z0
, · · · , z

n

z0

)
,

then then we can choose a local frame e, and e([z]) := ([z], (1, ξ1, · · · , ξn)), so we get

h(e, e) = 1 + |ξ1|2 + · · ·+ |ξn|2,

and hence

θ = ∂ logh =
1

1 + |ξ1|2 + · · ·+ |ξn|2
n∑
i=1

2ξ̄idξi,

and furthermore, if we denote |ξ|2 = |ξ1|2 + · · ·+ |ξn|2 for short, we have

Θ = ∂̄∂ logh = −
(

δij
1 + |ξ|2

− ξ̄iξj

1 + |ξ|2

)
dξi ∧ dξ̄j .
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4.3 Chern Classes of a Complex Vector Bundle

Beforewe introduceChern classes, we need have amore precise understanding of curvature formΘ, actu-

ally, sinceΘ(fξ) = fΘξ, so we can viewΘ as a linear transformation , so it is actually a EndE−valued

2-forms, and now we need to give a brief introduction of the bundle EndE .

Definition 4.3.1

Let E be a complex vector bundle of rank r over X , the bundle End E is defined to be

End E :=
⊔
p∈X

EndC(Ep) =
⊔
p∈X

HomC(Ep, Ep)

as a set. If we have a natural trivialization of E, π−1(U) → U × Cr, equivalently, we choose a

local frame {ei}ri=1. Now we have an induced local frame for End E:

Eij ∈ C∞(U,End E), Eij(ek) = δjkei .

Under this frame, we get a trivialization map:

π̃−1(U)→ U ×Mr(C),

whereMr(C) is the linear space of r × r complex matrices. The trivialization map is given byp,∑
i,j

aijEij(p)

 7→ (p, (aij)).

A local section σ =
∑
i,j

aijEij ∈ C∞(U,End E) can be identified with a Mr(C) valued smooth

function A = (aij) : U →Mr(C). So for a section s = siei, we have

σs := σ(s) =
∑
i,j

aijEij(s
kek) =

∑
i,j

aijs
jei.

So under the trivilization, the action of σ on s is just the matrix (aij) times the column vector (sk) .

Now we change the local frame {eα} to ẽα = aβαeβ , then we have a corresponding induced frame

Ẽαβ . Then for a local section σ ∈ C∞(U,End E), suppose (bβα) = (aβα)−1, if

σ =
∑
α,β

cαβEαβ =
∑
α,β

c̃αβẼαβ ,

then we actually have

σ(eβ) =
∑
α,β

cαβeα, σ(ẽβ) =
∑
α,β

c̃αβ ẽα.
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so we get ∑
α,β

c̃αβ ẽα = σ
(
aγβeγ

)
= aγβ

∑
µ

cµγeµ =
∑
µ

aγβcµγb
α
µ ẽα,

and hence c̃ = a−1ca .

So a smooth section of EndE is given by a family of locally defined matrix-valued smooth functions

ci : Ui →Mr(C), and when Ui ∩ Uj 6= ∅, we have

ci = ψ−1
ij cjψij .

Similarly, End E-valued differential forms are locally given by

η =
N∑
i=1

ωi ⊗Ai,

whereAi is a matrix-valued smooth function and ωi is a smooth k−form on a trivilization neighborhood

U . To make it well-defined, we require that when we change the local frame by ẽα = aβαeβ , we have

η̃ = a−1ηa =

N∑
i=1

ωi ⊗ (a−1Aia).

One now may feel confused about two definitions : matrix-valued form and matrix of diff forms ,

as above, aMr(C)-valued differential form can always be written as a r× r matrix of differential forms:

let η =
N∑
i=1

ωi ⊗ Ai. Now suppose Ai = (Aiαβ) with Aiαβ are smooth functions, then we have Ai =∑
α,β

AiαβEαβ and hence

η =
∑
i

ωi ⊗Ai =
∑
i

∑
α,β

ωi ⊗ (AiαβEαβ)

=
∑
α,β

(∑
i

ωiA
i
αβ

)
⊗ Eαβ

=:
∑
α,β

ηαβ ⊗ Eαβ .

This means that we can view η as a matrix whose (α, β)−entry is precisely the differential forms ηαβ =∑
i

Aiαβωi. One may still feel confused, now we give an example

dz1 ⊗

1 z20232

1 0

+ dz2 ⊗

 0 1

ez1 1

 =

 dz1 z20232 dz1 + dz2

dz1 + ez1dz2 dz2

 ,

wher left hand is matrix-valued form, and the right hand is matrix of differential forms.

Now we introduce two operators on End E-valued differential forms , suppose η = ηαβ ⊗ Eαβ , so

we define the trace of η is trη =
∑
α

ηαα.
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It is not hard to check the definition above equals to the definition below:

tr η =
∑
i

(tr Ai)ωi.

Another tool we shall use is the commutator, defined by

[ω ⊗A, η ⊗B] := (ω ∧ η)⊗ [A,B] ,

this is defined using thematrix-valued forms, but we can see that it is really a commutator in linear algebra

[A,B] = AB−BA, by using the matrix of differential forms, one can see that ω⊗A = ωA = (Aαβω),

and similarly η ⊗B = (Bαβη), so

[ω ⊗A, η ⊗B] = ωA ∧ ηB − (−1)deg(ω) deg(η)ηB ∧ ωA.

One can easily check and we will not offer a proof here.

We sometimes extend the definition: we define for the connection∇,

[∇, ω ⊗A]s := ∇(ω ⊗As)− (−1)deg(ω)ω ⊗A ∧∇s .

we generalize this definition is for the curvature form Θ .

Now we offer some technical lemmas:

Proposition 4.3.1

If ∇1 and ∇2 are two connections on E, then ∇1 −∇2 ∈ A1(End E).

Proof. For any s ∈ C∞(E), and f ∈ C∞, we have

(∇1 −∇2)(fs) = f(∇1 −∇2)s+ dfs− dfs

= f(∇1 −∇2)s,

then we finish the proof. ♣

Proposition 4.3.2

If P,Q are both End E-valued differential forms, then tr[P,Q] = 0.

Proof. SupposeP = ω⊗A, andQ = η⊗B, then tr[P,Q] = tr(ω∧η⊗[A,B]) = tr([A,B])(ω∧η) = 0,

then we finish the proof, general case is from the linearity of two operators. ♣

Proposition 4.3.3: Second Bianchi identity

We have [∇.Θk] = 0, for any k ∈ N.
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Proof. Simply note that Θ = ∇2, thus we have for any section s, [∇,∇2k]s = ∇(∇2k)s −

(−1)2k∇2k(∇s) = 0, so we finish the proof easily. ♣

Remark. Now we pove that [∇,Θ] = 0 is our familiar 2nd Bianchi identity. In fact, let s = siei be a

local section of E, then from

0 = [∇,Θ]s = [∇,Θi
jE

j
i ](s

kek)

= ∇(Θi
js
jei)−Θi

jE
j
i ∧ (dskek + slθkl ek)

= [dsj ∧Θk
j + sjdΘk

j +Θi
js
j ∧ θki −Θk

j ∧ (dsj + θji s
i)]ek

= sj [dΘk
j +Θi

j ∧ θki −Θk
i ∧ θij ]ek,

since {sj} is arbitary, so we have dΘ+ θ ∧Θ−Θ ∧ θ = 0. In the Riemannian case,

Θi
j =

1

2
Rijpqdxp ∧ dxq, θij = Γijkdxk,

thus we can easily have

∇kRijpqdxk ∧ dxp ∧ dxq = 0,

this is nothing but the more familiar formula

∇kRijpq +∇pRijqk +∇qRijkp = 0 .

Proposition 4.3.4: The key lemma

For A ∈ Ak(End E), we have d tr(A) = tr[∇, A].

Proof. First note that the left hand side is obviously independent of the connection. For the right hand

side, if we use another connection∇′, then we have

tr[∇′, A] = tr[∇′ −∇, A] + tr[∇, A] = tr[∇, A],

where we use∇′ −∇ ∈ A1(End E), and tr[P,Q] = 0.

So we can in fact choose a trivial conncetion locally to carry out the computation: let∇0 = d be a

trivial connection, where∇0ei = 0 for the fixed frame, thus we have∇0s
iei = dsiei.Then

[∇0, A]s = ∇0(As)− (−1)deg(A)A ∧∇0s

= ∇0(A
i
js
jei)− (−1)deg(A)Aij ∧ dsjei

= d(Aijsj)ei − (−1)deg(A)Aij ∧ dsjei

= (dAij)sjei = (dA) · s,

so we have tr[∇0, A] = tr(dA) = d tr(A), then we finish the proof. ♣
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Now we have enough tools to talk about Chern-Weil theory : For any formal power series in one

variable f(x) = a0 + a1x+ · · · , we define

f(Θ) := a0 + a1Θ+ · · ·+ anΘ
n ∈ A∗(X) ,

where recall Θ is a 2-form, so Θk = 0 for k > n.

Theorem 4.3.1: Chern-Weil Theorem

For f as above, we have

1. d trf(Θ) = 0 ;

2. If ∇̃ is another connection with curvature Θ̃, there is a differential form η ∈ A∗(X) such

that trf(Θ)− trf(Θ̃) = dη.

So the cohomology class of trf(Θ) is independent of the connection. We call it the characteris-

tic class of E associated to f, and trf(Θ) the corresponding characteristic form of E associated

to f and ∇.

Proof. For the first conclusion, we have

d trf(Θ) = tr[∇, f(Θ)] =

n∑
k=1

ak[∇,Θk] = 0,

where we used Bianchi identity in the last step.

For the second conclusion, we choose a family of conncetions∇t := t∇̃+ (1− t)∇, then

∇̇t :=
d∇t
dt

= ∇̃t −∇ ∈ A1(End E),

so we actually have

Θ̇t :=
Θt

dt
=

d∇t
dt
∧∇t +∇t ∧

d∇t
dt

= [∇t, ∇̇t].

Now we can change have the following :

d
dt
trf(Θt) = tr

(
Θ̇tf

′(Θt)
)
= tr

(
[∇t, ∇̇t]f ′(Θt)

)
= tr[∇t, ∇̇tf ′(Θt)] (Bianchi)

= d tr
(
∇̇tf ′(Θt)

)
,

so we can conclude that trf(Θ)− trf(Θ̃) = d
∫ 1

0
tr
(
∇̇tf ′(Θt)

)
dt. ♣

Example 4.3.1 (Chern Class). Now Chern class is a special case of charactristic class, by choosing

f(Θ) := det
(
Ir +

√
−1
2π

Θ

)
= exp

(
tr log

(
Ir +

√
−1
2π

Θ

))
,
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so by Taylor expansion, we have f(Θ) = 1+ c1(E,∇)+ · · ·+cn(E,∇), where ci(E,∇) ∈ A2i(X) are

called closed forms, whose cohomology class are all independent of ∇ from the theorem above. These

are called Chern classes, for example, from

exp(tr log(Ir +A)) = exp
(
tr
(
A− A2

2
+
A3

3
+ · · ·

))
= 1 + tr(A) +

(
1

2
(trA)2 − 1

2
tr(A2)

)
+ · · · ,

wo we actually have

c1(E,∇) =
√
−1
2π

trΘ, c2(E,∇) =
1

8π2
(
(tr)(Θ2)− (trΘ)2

)
.

Now we offer more propositions about Chern classes :

Proposition 4.3.5

We can find a connction∇ such that all chern forms ck(E,∇) are real.

Proof. Since the Chern classes are independent of the connection, so we can choose a metric h and

require that∇ is compatible with the metric. Choose a local unitary frame, so that hij̄ = δij , then

0 = dhij̄ = dh(ei, ej) = θki δkj + δikθ̄
k
j = θij + θ̄ji ,

in short, θ̄T = −θ, this in turn implies that Θ̄T = −Θ , and so c(E,∇) = c(E,∇). ♣

Now we shall prove that Chern classes are obstructions to the existence of global linearly indepen-

dent smooth sections:

Theorem 4.3.2: Chern Classes are Obstructions

If E → X is a smooth complex vector bundle of rank r, if there are k smooth sections

s1, · · · , sk ∈ C∞(E) such that {si(p)}ki=1 are linearly independent everywhere, then we have

ci(E) > 0 for i > r − k.

Proof. consider E = T ⊕ E′ where T is trivial k−bundle. ♣
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4.4 Hermitian Metrics and Kähler Metrics

Definition 4.4.1: Hermitian Metric

LetX be a complex manifold of dimension n, we denote the canonical almost complex structure

by J . A Riemannian metric g on X is called Hermitian, if g is J−invariant, i.e.,

g(Ju, Jv) = g(u, v), ∀u, v ∈ TR
p X, p ∈ X.

Remark. As before, we extend g to TCX as a complex bilinear form. For simplicity, we also denote

this bilinear form by g. Then we have

g(T 1,0, T 1,0) = g(JT 1,0, JT 1,0) = g(
√
−1T 1,0,

√
−1T 1,0) = −g(T 1,0, T 1,0),

so g(T 1,0, T 1,0) = 0 = g(T 0,1, T 0,1), then

h(Z,W ) := g(Z, W̄ )

defines an Hermitian metric on the rank n holomorphic vector bundle T 1,0X = span{∂z1 , · · · , ∂zn}.

Definition 4.4.2: Kähler Form

For an Hermitian metric g on (X, J), we define the associated Kähler form ωg by

ωg(u, v) := g(Ju, v).

Remark. Note that we have

ωg(u, v) = g(Ju, v) = g(J2u, Jv) = −g(u, Jv) = −ωg(v, u),

so ωg is a real 2-form on X .

Definition 4.4.3: Kähler Manifold

An Hermitian metric g on X is called Kähler metric, if dωg = 0. Its cohomology class in

H2
dR(X) is called the Kähler class of g. If a complex manifold admits a Kähler metric, we call

it the Kähler manifold.

Remark. Recall the definition of sympletic manifold , which is a 2n smooth manifold, with a nonwhere

vanishing 2-form ω and dω = 0, since we already have ωg is a real 2-form, then by the definition of

Kähler manifold, we know that Kähler manifold is also a sympletic manifold .

Locally, if (z1, · · · , zn) is a holomorphic coordinate system, then g is determined by gij̄ := g(∂i, ∂j̄),

where ∂i =
∂

∂zi
, and ∂j̄ =

∂

∂zj
, since gij = gīj = 0. Then we have

ωg =
√
−1gij̄dzi ∧ dzj ,
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now we have

0 = dωg =
√
−1dgij̄ ∧ dzi ∧ dzj

=
√
−1

∂gij̄
∂zk

dzk ∧ dzi ∧ dzj −
√
−1

∂gij̄

∂zl
dzi ∧ dzl ∧ dzj

=
√
−1

∑
j

∑
k<i

(
∂kgij̄ − ∂igkj̄

)
dzk ∧ dzi ∧ dzj +

∑
i

∑
j<l

(
∂l̄gij̄ − ∂j̄gil̄dzi ∧ dzj ∧ dzl

) ,
so being Kähler mean that gij̄ have the additional symmetries :

∂kgij̄ = ∂igkj̄ , ∂j̄gil̄ = ∂l̄gij̄ , ∀i, j, k, l.

Example 4.4.1. The Euclidean metric g =

n∑
i=1

(dxi⊗ dxi+ dyi⊗ dyi) of R2n ∼= Cn is a Kähler metric,

since we have

∂i =
1

2

(
∂xi −

√
−1∂yi

)
, ∂j̄ =

1

2

(
∂xi +

√
−1∂yi

)
,

then we have gij̄ = g(∂i, ∂j̄) =
1

2
δij , so ωg =

√
−1
2

n∑
i=1

dzi ∧ dz̄i , since the coeffcients are all con-

stans, then we know that dωg = 0.

To give more examples, note that to define a Kähler metrics, it suffices to define its associated Kähler

form, since we have g(u, v) = g(Ju, Jv) = ωg(u, Jv). So sometimes we will also say “ Let ωg be a

Kähler metric ...”

Example 4.4.2. Let X = B(1) ⊂ Cn be the unit ball, we define a Kähler metric:

ωg :=
√
−1∂∂̄ log 1

1− |z|2
=
√
−1gij̄dzi ∧ dz̄j ,

here we have (gij̄) =
(

δij
1− |z|2

+
z̄iz̄j

(1− |z|2)2

)
, which is positive definite, and dωg = 0 since d∂∂̄ = 0,

so it is indeed a Kähler metric, this is called the complex hyperbolic metric.

Example 4.4.3. LetX = CPn with homogeneous coordinates [Z0, · · · , Zn], we define a Kähler metric:

ωg :=

√
−1
2π

∂∂̄ log
(
|Z0|2 + · · ·+ |Zn|2

)
,

It is easy to check that this is well-defined. It is called the Fubini-Study metric.

Remark. However, not every compact complex manifold is Kähler , since, for example,H2
dR(X)must

be non-trivial, for if not, [ωg] = 0 then will be exact, so
∫
X
ωng = 0 by Stokes theorem, but this is

impossible since
:
it
::
is
::::
the

:::::::
multiple

:::
of

:::
the

:::::::
volume

::
of

:::
X .
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Theorem 4.4.1

Calabi-Eckmann manifolds, i.e., S2p+1 × S2q+1 are never Kähler, where p, q ≥ 1.

Proof. By Kunneth formula, andH1(S2k+1) = H2(S2k+1) = 0, we know H2(X) = 0. ♣

However, we still have a lot of Kähler manifolds:

Proposition 4.4.1

If X is Kähler and Y is a complex analytic submanifold of X , then Y is also Kähler.

Proof. Let g be a Kähler metric on X and ι : Y → X be the embedding map, then ι∗g is a Kähler

metric on Y and the associated Kähler form is just ι∗ωg. ♣

Corollary 4.4.1

All projective algebraic manifolds are Kähler.

Proof. Recall projective algebraic manifolds are the complex submanifolds of CPn, then from Fubini-

Study metric we know that CPn is Kähler, so we finish the proof. ♣

In Riemannian geometry, normal coordinates are very useful in tensor calculations. The next the-

orem shows that being Kähler is
::::
both

:::::::::
necessary

::::
and

::::::::
sufficient

:::
for

::::
the

::::::::
existence of complex analogue of

normal coordinates.
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