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Abstract
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1 Lecture 1: Gromov-Hausdorff Topology
Definition 1.1 (Metric Space). We call (X, d) is a metric space, if the metric d satisfies

1. d(x, y) = d(y, x), for any x, y ∈ X, and d(x, y) = 0 if and only if x = y;

2. triangle inequality, d(x, y) + d(y, z) ≥ d(x, z).

Furthermore, we have

• Y ⊂ X is ε−dense, if X ⊂ Bε(Y ) := {x ∈ X : d(x, Y ) < ε}, where d(x, Y ) := infy∈Y d(x, y);

• Y ⊂ X is a ε−net, if for arbitrary y1, y2 ∈ Y , d(y1, y2) > ε, and X ⊂ Bε(Y );

• X is totally bounded, if ∀ε > 0, there exists finite ε−net of X;

• (X, d) is compact if (X, d) is complete and totally bounded.

Definition 1.2 (Hausdorff Distance). Let (X, d) be a complete metric space, Z,W ⊂ X are bounded closed subsets,
then we define the Hausdorff distance between G and H is

dH(Z,W ) := inf{ε : Z ⊂ Bε(W ) and W ⊂ Bε(Z)}. (1.1)

Example 1.3. Z = [0, 1] ⊂ R, W = [1, 2] ⊂ R, then we have dH(Z,W ) = 1.

Theorem 1.4. Let χ to be the all bounded closed subset of (X, d), then

1. If (X, d) is complete, then (χ, dH) is also a complete metric space;

2. If (X, d) is compact, then (χ, dH) is also a compact metric space;

Proof. We only prove (χ, dH) is a metric space: If dH(Z,W ) = 0, then we have Z ⊆ W and W ⊆ Z, then we
have Z = W , here we use the closed condition to show that B0(Z) = Z. Then for the triangle inequality, for any
Z,W, Y ⊂ X, assume dH(Z,W ) = a, dH(W,Y ) = b, then ∀ε > 0, we have

Z ⊆ Ba+ε(W ), W ⊆ Bb+ε(Y ),

then from a basic observation: Bδ(Bε(Y )) ⊆ Bδ+ε(Y ), we have Z ⊆ Ba+b+2ε(Y ), then similarly, Y ⊆ Ba+b+2ε(Z),
so we actually have

dH(Z, Y ) ≤ a+ b+ 2ε = dH(Z,W ) + dH(W,Y ) + 2ε, ∀ε > 0,

finally, we show that dH(Z, Y ) ≤ dH(Z,W ) + dH(W,Y ). Left part is for exercise.
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Definition 1.5 (Isometry). If (X, dX) and (Y, dY ) are isometric metric spaces, if there exists φ : (X, dX) → (Y, dY )
and ψ : (Y, dY ) → (X, dX) such that

1. dX(x1, x2) = dY (φ(x1, φ(x2))), dY (y1, y2) = dX(ψ(y1), ψ(y2));

2. ψ ◦ φ = IdX , φ ◦ ψ = IdY .

Definition 1.6 (Isometric Embedding). we denote (X, dX)
iso
↪→ (Y, dY ), if there exists φ : (X, dX) → (Y, dY ) such

that φ is isometry and injective.

Definition 1.7 (Gromov-Hausdorff Distance). If (X, dX) and (Y, dY ) are two compact metric spaces, then we define
the Gromov-Hausdorff distance of X,Y is

dGH(X,Y ) := inf
(Z,dZ)

{
dZH(X,Y )

∣∣∣∣X iso
↪→ Z, Y

iso
↪→ Z

}
. (1.2)

Remark 1.8. The definition above is well-defined, we assume diam(X, dX), diam(Y, dY ) ≤ D, then let Z = X t Y ,
and the metric dZ on Z is given by dZ |X = dX , dZ |Y = dY , and dZ(x, y) = D.

Actually, there is no need to consider genneral space Z other than X t Y , we call d is an admissible metric, if
d|X = dX , d|Y = dY , and d is a metric on X t Y , then we actually have

d′GH(X,Y ) := inf
(X⊔Y,d),d is admissible

{dH(X,Y )} = dGH(X,Y ). (1.3)

Proof. By definition, we have d′GH(X,Y ) ≥ dGH(X,Y ). On the other hand, for any ε > 0, there exists (Z, dZ) and
X

iso
↪→ Z, Y

iso
↪→ Z, such that dZH(X,Y ) ≤ dGH(X,Y )+ ε. Now consider the product space (Z× [0, ε], d′Z) with product

metric, then naturally we have (X, dX)
iso
↪→ (Z × {0}, d′Z), and (Y, dY )

iso
↪→ (Z × {ε}, d′Z).

Now let (X t Y, d′) is the restriction from X × [0, ε], then by definition, we have d′GH(X,Y ) ≤ dd
′

H(X,Y ), and

dd
′

H(X,Y ) = dd
′

H(X × {0}, Y × {ε})

≤ dd
′

H(X × {0}, X × {ε}) + dd
′

H(X × {ε}, Y × {ε})
≤ ε+ dZH(X,Y ) ≤ dGH(X,Y ) + 2ε,

so we have d′GH(X,Y ) ≤ dGH(X,Y ), then actually dGH(X,Y ) = d′GH(X,Y ), from this we finish the proof.

Definition 1.9. We Denote M = {all compact metric spaces}/isometric class.

We will show (M , dGH) is a complete metric space, this needs several steps:

Lemma 1.10. For (M , dGH), it satisfies triangle inequality.

Proof. For triangle inequality, for arbitrary compact spaces (X, dX), (Y, dY ) and (Z, dZ), our goal is dGH(X,Y ) +
dGH(Y, Z) ≥ dGH(X,Z), assume dGH(X,Y ) = a, dGH(Y, Z) = b, then there exisits admissible metric dXY on X tY
and dY Z on Y t Z, such that

ddXY

H (X,Y ) ≤ a+ ε, ddY Z

H (Y, Z) ≤ b+ ε,

now define admissible metric dXW on X tW :

dXZ(x, z) := inf
y∈Y

{dXY (x, y) + dY Z(y, z)}, (1.4)

then one can check this is well defined. Now define a metric d on W = X t Y t Z such that

d|X⊔Y = dXY , d|Y ⊔Z = dY Z , d|X⊔Z = dXZ , (1.5)

one can also check this is a metric , now in the total space W , we have

dWH (X,Z) ≤ dWH (X,Y ) + dWH (Y, Z) = ddXY

H (X,Y ) + ddY Z

H (Y, Z) ≤ a+ ε+ b+ ε,

so we have dGH(X,Z) ≤ dWH (X,Z) ≤ a+ b = dGH(X,Y ) + dGH(Y, Z).

The several lemmas given below will offer some tools to estimate the Gromov-Hausdorff distance:
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Lemma 1.11. If (Y, dX) ⊆ (X, dX) is ε−dense, then dGH(X,Y ) ≤ ε.

Lemma 1.12. Let (X = {x1, · · · , xN}, dX) and (Y = {y1, · · · , yN}, dY ), dX(xi, xj) = dij, dY (yi, yj) = hij, assume

|dij − hij | < ε, ∀i.j,

then dGH(X,Y ) ≤ ε.

Proof. Let Z = X t Y , define admissble metric dZ such that

dZ(xi, yj) = ε+min
k

{dik + hkj}, dZ(xi, yi) = ε,

then dZ is a metric and (Check!). Thus, dZH(X,Y ) = ε, thus dGH(X,Y ) ≤ ε.

Definition 1.13 (ε−GH Map). We call f : X → Y is ε−GH map, if it satisfies

1. ε−isometry, i.e., |dX(x1, x2)− dY (f(x1), f(x2))| < ε;

2. ε−onto, i.e., Y ⊆ Bε(f(X)).

Remark 1.14. 0−GH map is actualy a isometry.

Theorem 1.15. we have the following dual statements:

1. If f : X → Y is a ε−GH map, then dGH(X,Y ) ≤ 6ε;

2. If dGH(X,Y ) < ε, then there exists 6ε−GH map f : X → Y .

Proof. The main idea is using discrete points to subsitute the compact sets.
(Part 1) For the first statement, choose Xε = {x1, · · · , xN} ⊂ X is a ε−net, then we have X ⊂ Bε(Xε), since

for all x ∈ X, then ∃xi ∈ Xε, such that dX(x, xi) < ε. Then from definition 1.13, we have dY (f(x), f(xi)) ≤
dX(x, xi) + ε ≤ 2ε, so f(X) ⊂ B2ε(f(Xε)), then Y ⊂ Bε(f(X)) ⊂ B3ε(f(Xε)). Now consider Xε and f(Xε), by
definition 1.13 and lemma 1.12, we have dGH(Xε, f(Xε)) ≤ ε. So now from triangle inequality, we have

dGH(X,Y ) ≤ dGH(X,Xε) + dGH(Xε, f(Xε)) + dGH(f(Xε), Y ) ≤ ε+ ε+ 2ε = 5ε.

(Part 2) For the second statement, let Xε = {x1, x2, · · · , xN} ⊆ X be a ε−net, then we claim: there exists
Yε = {y1, · · · , yN}, such that ”d(xi, yi) ≤ 3ε

2 ”.
Now we prove the claim above: since dGH(X,Y ) ≤ ε, then there exists (Z, dZ) such that X iso

↪→ Z, Y
iso
↪→ Z, and

dZH(X,Y ) ≤ 5ε
4 , which means that X ⊂ B3ε/2(Y ), then ∃Yε = {y1, · · · , yN} such that dZ(xi, yi) ≤ 3ε

2 , then

|dX(xi, xj)− dY (yi, yj)| ≤ dZ(xi, yi) + dZ(xj , yj) ≤ 3ε. (1.6)

Another claim: Y ⊂ B4ε(Yε), note that from Y ⊂ B3ε/2(Y ), for ∀y ∈ Y , ∃x ∈ X such that dZ(x, y) ≤ 3ε
2 , since

Xε is a net, then ∃xi ∈ Xε such that dZ(x, xi) ≤ ε, then we have

dZ(y, yi) ≤ dZ(y, x) + dZ(x, xi) + dZ(xi, yi) ≤
3ε

2
+ ε+

3ε

2
= 4ε,

this shows that Y ⊂ B4ε(Yε), which is our second claim.
Now we define f : X → Yε ⊂ Y , such that f(xi) = yi and if x /∈ Xε, then there exists xi ∈ Xε such that

dZ(x, xi) = min1≤j≤N dZ(x, xj) ≤ ε, then f(x) = yi (if xi is the only choice, then just choose one as you like),
geometrically, one can view we almost send the points ”parallelly” from X to Y , then from (1.6), one can check
6ε−isometry, and since f(X) = Yε, so 6ε−onto is also trivial.

Remark 1.16. When we esitimate dH(U, V ), naturally when U ⊂ Bε(V ), and V ⊂ Bε(U), then dH(U, V ) ≤ ε, note
that in most cases, we naturally may have U ⊂ V = B0(V ) ⊂ Bε(Y ), so we only need one side estimation, this
process appears but omits in the proof above.

Remark 1.17. From theorem 1.15, we know that the existence of ε−map is equivalent to the Gromov-Hausdorff
distance is small.

Now recall our goal:
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Lemma 1.18. For (M , dGH), if dGH(X,Y ) = 0, then X is isometric to Y .

Proof. This is a direct corollary from remark 1.14 and 1.17.

From lemma 1.10 and 1.18, we have:

Theorem 1.19. (M , dGH) is a complete and separable metric space.

Remark 1.20. A necessary reference is the chapter 11 of [1].

Definition 1.21 (Fuctions are closed in GH-sense). Suppose (X, dX) and (Y, dY ) are two compact metric spaces
with dGH(X,Y ) ≤ ε, and f : X → R, g : Y → R are two functions, we say |g − h| ≤ ε in GH-sense, if there exists
ε−map h : X → Y such that

sup
x∈X

|f(x)− g ◦ h(x)| ≤ ε. (1.7)

Example 1.22. Let f, g : [0, 1] → R, and Γf ,Γg ⊂ R2 are the images of f, g, then trivially, we have

dGH(Γf ,Γg) = dR
2

H (Γf ,Γg) ≤ max
x∈[0,1]

|f(x)− g(x)|,

one can see this by drawing a picture and note that in this case , dGH is similar to the L∞ norm.

Example 1.23. Let f, g : [0, 1] → R and continuous differentiable, if Γf ,Γg ⊂ R2 are the images of f, g, and let
dΓf

(x1, x2) =the length connecting x1 and x2, dΓg
(y1, y2) =the length connecting y1 and y2, then maybe non-trivially,

there is a constant C only depends on f, g such that

dGH(Γf ,Γg) ≤ C

(
max
x∈[0,1]

|f(x)− g(x)|, max
x∈[0,1]

|f ′(x)− g′(x)|
)
,

note that here we use the intrinsic metric of Γf and Γg, so the case tends to be more difficult.

From the examples above, we have two interesting computations:

Exercise 1.24. Compute dR
2

H (S1r(0), S1R(0)) and dGH(S1r(0), S1R(0)), where the second we use intrinsic metric as
example 1.23.

Definition 1.25 (Path and Length). Let (X, d) be a path connected metric space, then for each curve γ : [0, 1] → X,
we define the lengh of γ is

L[γ] := sup
0=t0<t1<···<tN=1

(
N−1∑
i=0

d (γ(ti), γ(ti+1))

)
. (1.8)

Definition 1.26 (Length Space). A metric space (X, d) is called a length space, if it is path connected, and for all
x0, x1 ∈ X, there exists a path (or preisely, geodesic) γ such that γ(0) = x0, γ(1) = x1 and L[γ] = d(x1, x2).

The most important results is

Theorem 1.27. If {(Xi, di)}i∈N be compact length spaces, and converges to (X, d) under Gromov-Hausdorff distance,
then (X, d) is also a length space.

2 Lecture 2: Gromov’s Precompactness Theorem
We prove theorem 1.27 firstly:

Lemma 2.1. Let (X, d) is complete, then X is a length space if and only if for all x1, x2 ∈ X, there exists a midpoint
x3 of x1, x2, i.e., d(x1, x3) = d(x3, x2) = d(x1, x2)/2.

Proof. On the one hand is trivial, if X is a length space, then there exists a minimal curve γ connecting x0 and
x1, then choose t0 such that d(x1, x3) = d(x1, x2)/2, then note that d(x1, x3) + d(x3, x2) ≤ L[γ] = d(x1, x2) ≤
d(x1, x3) + d(x2, x3), thus they all equal, then d(x1, x3) = d(x3, x2) = d(x1, x2)/2.

On the other hand, from the midpoint condition, we know that we can find x1/2 for x0 and x1, then by induction
for ∀t ∈

{
i
2k
|0 ≤ i ≤ 2k, k ≥ 1

}
:= T , we have xt1+t2/2 is the midpoint of xt1 and xt2 , now we can define γ : T → X,

by easily check, we have d(xt, xs) = |t − s|d(x0, x1), since T ⊂ [0, 1] is dense, so we can extend to [0, 1], then is the
desired minimal curve.
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Proof of themrem 1.27. Easily see that (X, d) is complete(Check!), then from lemma 2.1, it suffices to check midpoint
condition, now if x1 = limi→∞ x

(i)
1 , and x2 = limi→∞ x

(i)
2 , and since each Xi is length space, then there exists x(i)1/2

is the midpoint of x(i)1 and x(i)2 , then we can know that x1/2 = limi→∞ x
(i)
1/2 is the midpoint of x(i)1 and x(i)2 (Check!),

so we know that (X, d) is also a length space.

Definition 2.2 (PGH-Distance). Let (X, dX , x) and (Y, dY , y) are two compact pointed metric space, then we define
the PGH-distance is

dPGH((X,x), (Y, y)) := inf
(Z,dZ)

{
dZH(X,Y ) + dZ(x, y)

∣∣∣∣X iso
↪→ Z, Y

iso
↪→ Z

}
. (2.1)

Example 2.3. Let (X,x) = ([0, 2], 0) ⊂ R, and (Y, y) = ([0, 2], 1) ⊂ R, then dPGH = 1.

Definition 2.4 (PGH-Convergence). We say (Xi, di, xi) converge to (X, d, x) with PGH-distnace, if for all R > 0,

(B̄R(xi), di, xi)
dP
GH→ (B̄R(x), d, x).

I have some questions about this definition.

Definition 2.5 (Capacity). Let (X, d) is a compact metric space, r > 0, we define

CapX(r) := max#
{
B r

2
(x) ⊂ X and pairwise disjoint

}
, (2.2)

then since X is compact, we know that CapX(r) <∞ for all r > 0.

Remark 2.6. If CapX(r) ≤ N , then ∃N many Br−balls cover X, one can prove it by contradiction.

Lemma 2.7. If dGH(X,Y ) ≤ ε
3 , then for all r > 0, CapX(r + ε) ≤ CapY (r).

Proof. Assume CapX(r + ε) = N , then there exists N pairwise disjoint balls Br+ε/2(xi) for i = 1, · · · , N , then
d(xi, xj) ≥ r + ε, since dGH(X,Y ) ≤ ε

3 , then there exists {y1, · · · , yN} ⊂ Y such that d(xi, yi) ≤ ε
2 , then we have

d(yi, yj) ≥ d(xi, xj)−d(xi, yi)−d(xj , yj) ≥ r, then we have Br/2(yi)∩Br/2(yj) = ∅, thus we have CapY (r) ≥ N .

Theorem 2.8 (Gromov Precompactness Theorem). Let C be a collection of compact metric spaces, then C ⊂
(M , dGH) is precompact(each sequence has a convergent subsequence) if and only if there exists a map N : (0, 1) → Z+

such that CapX(r) ≤ N(r) for all X ∈ C and 0 < r < 1.

Proof. Asuume C is precompact then equivalently, it is totally bounded, then for all ε > 0, there exists finite
{X1, · · · , Xkε

} ⊂ C , such that for all X ∈ C , there exits Xi ∈ {X1, · · · , Xkε
} such that dGH(Xi, X) ≤ ε

30 , set
N(ε) = max1≤i≤kε

CapXi
(ε/10) <∞, then by lemma 2.7, we have CapX( 9

10ε+
1
10ε) ≤ CapXi

( 9
10ε) ≤ N(ε).

On the other hand, if for ∀ε > 0 and ∀X ∈ C , since CapX(ε) ≤ N(ε), then there exists Xε := {x1X , · · · , x
N(ε)
X } ⊂

X such that X ⊂ Bε({x1X , · · · , x
N(ε)
X }), then dGH(X,Xε) ≤ ε, and diamX ≤ 2ε · N(ε), now let f : C →

RN(ε)(N(ε)−1)/2, and X 7→ (eij(X)), where eij(X) = dX(xiX , x
j
X), then f(C ) ⊂ R··· is a bounded subset, the

left part one can refer [1].

Definition 2.9 (Doubly Measure). If (X, d, µ) is a compact metric measure space, µ is a Borel measure, and
0 < µ(X) < +∞, we say µ is doubly measure with κ > 0, if

µ(Br(x)) ≥ κµ(B2r(x)), ∀Br(x) ⊂ X. (2.3)

Lemma 2.10. Let (X, d, µ) is a doubly measure space with κ > 0, assume diamX ≤ D, then for all 0 < r ≤ D,

CapX(r) ≤ C(κ)

(
D

r

)α(κ)

,

where C(κ), α(κ) > 0.

Proof. For all x ∈ X, we have µ(Br/2(x)) ≥ κN+1µ(B2Nr(x)), where D ≤ 2Nr < 2D, then we have N − 1 ≤ log2
D
r ,

then we have κN+1 ≥ κ2 · κlog2
D
r = κ2 ·

(
D
r

)log2 k
,then we have

µ
(
Br/2(x)

)
≥ κ2 ·

(
D

r

)log2 k

· µ(X),
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then we have

CapX(r) ≤ µ(X)

µ
(
Br/2(x)

) ≤ κ−2 ·
(
D

r

)logk 2

,

then we finish the proof.

Remark 2.11. The doubly measure condition comes from the comparison of volume theorem, so it is general in
Riemmanian geometry. So this lemma helps us to control capcity, then we can study GH-convergence.

Now we turn to some Riemmanian manifolds with lower Ricci bound:

Definition 2.12 (Curvature Tensor). For X,Y, Z,W ∈ X(M), we define

〈R(X,Y )Z,W 〉 := 〈∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W 〉. (2.4)

Definition 2.13 (Ricci Curvature). We define Ricci curvature of X,Y is

Ric(X,Y ) := tr〈R(·, X)Y, ·〉 = Ric(Y,X). (2.5)

Definition 2.14 (Gradient,Hessian and Laplacian). Let x ∈ M , and (U, x1, · · · , xn) is the local coordinate of x,
then if u :M → R is a smooth function, then we define ∇u as

〈∇u,X〉 := X(u), (2.6)

then more precisely, we have
∇u = gij∂iu∂j . (2.7)

We define Hessu or ∇2u is a (0, 2)−tensor, such that

∇2u(X,Y ) := 〈∇X∇u, Y 〉, (2.8)

locally, we have
∇2u(∂i, ∂j) = ∂i∂ju− Γk

ij∂ku. (2.9)

We also have the Laplacian of u
∆u = tr(∇2u) = gij∇2u(∂i, ∂j). (2.10)

Theorem 2.15 (Bochner Formula). If u ∈ C∞(M), then we have

1

2
∆|∇u|2 = |∇2u|2 + 〈∇u,∇∆u〉+Ric(∇u,∇u). (2.11)

Proof. Fix x ∈M , choose normal coordinate (U, x1, · · · , xn) such that ∂kgij(x) = 0, and gij(x) = δij , then we have

∇∂i
∂j |x = Γk

ij(x)∂k|x = 0, (2.12)

so we have at x,
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