1st Geometry and Topology Summer School Differential Forms in AT

Kai Zhu

Chern Class Nankai University

July 3,2023

Summary

Rievew of Last seminar

Poincaré Lemmas

Mayer-Vietoris Argument

Rievew of Last seminar

Some Basic Notations

- **1** Ω^* : The algebra over $\mathbb R$ generated by $\{\mathrm{d} x^i\}_{1\leq i\leq n}$;
- $oldsymbol{2}$ C^{∞} differential forms:

$$\Omega^*(\mathbb{R}^n) = C^{\infty}(\mathbb{R}^n) \underset{\mathbb{R}}{\otimes} \Omega^*;$$

- **3** differential operator $d \colon \Omega^q(\mathbb{R}^n) o \Omega^{q+1}(\mathbb{R}^n)$, with
 - lacksquare if $f\in\Omega^0(\mathbb{R}^n)$, then

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} dx^{i} =: \frac{\partial f}{\partial x^{i}} dx^{i};$$

 \bullet if $\omega = f_I \mathrm{d} x^I$, then $\mathrm{d} \omega = \mathrm{d} f_I \wedge \mathrm{d} x^I$.

Some Basic Notations

f 4 de Rham complex on $\Bbb R^n$:

$$\{\Omega^*(\mathbb{R}^n), d\} : 0 \to \Omega^0(\mathbb{R}^n) \stackrel{d}{\to} \Omega^1(\mathbb{R}^n) \stackrel{d}{\to} \Omega^2(\mathbb{R}^n) \stackrel{d}{\to} \cdots;$$

5 de Rham cohomology of \mathbb{R}^n :

$$H_{DR}^*(\mathbb{R}^n) := \text{Kerd/Imd};$$

$$\textbf{6} \ \ H^q(\mathbb{R}^1) = \begin{cases} \mathbb{R} & \text{if } q=0 \\ 0 & \text{if } q \geq 1 \end{cases}, \text{ we will soon show }$$

(Poincaré lemma)
$$H^q(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{if } q = 0 \\ 0 & \text{if } q \geq 1 \end{cases}$$
.

Some Important results

Theorem (short exact seq induces long exact seq)

Given a short exact seq of differential complexes:

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0,$$

there is a long exact seq of cohomological groups :

$$\cdots \to H^q(A) \xrightarrow{f^*} H^q(B) \xrightarrow{g^*} H^q(C) \to H^{q+1}(A) \to \cdots$$

Some Important results

Theorem (compact cohomology)

It is not hard to see

$$H_c^*(\mathrm{pt}) = egin{cases} \mathbb{R} & ext{in dimension } 0 \ 0 & ext{otherwise} \end{cases}, H_c^*(\mathbb{R}) = egin{cases} \mathbb{R} & ext{in dimension } 1 \ 0 & ext{otherwise} \end{cases}$$

we will soon see

Mayer-Vietoris Sequence

Theorem

Suppose $M=U\cup V$ with U,V open, then the Mayer-Vietoris seq below is exact:

$$0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0,$$

and

$$0 \leftarrow \Omega_c^*(M) \leftarrow \Omega_c^*(U) \oplus \Omega_c^*(V) \leftarrow \Omega_c^*(U \cap V) \leftarrow 0,$$

What we know? H*(IR') step by stef what we want? H*(IR') induction.

Poincaré Lemmas

Goal: Find relation between $H^*(\mathbb{R}^{n+1})$ and $H^*(\mathbb{R}^n)$

In this section, our main goal is to compute the ordinary cohomology and the compactly supported cohomology of \mathbb{R}^n , a baisic but improtant observation is

We will show that these maps induce inverse isomorphisms in cohomology and therefore $H^*(\mathbb{R}^{n+1}) \cong H^*(\mathbb{R}^n)$.

Since $s^* \circ \pi^* = (\pi \circ s)^* = \mathrm{id}$, but the other side doesn't hold, but we hope there exists K such that

$$1 - \pi^* \circ s^* = \pm (dK \pm Kd), \quad \text{T* o } \varsigma$$

$$K: \mathcal{N}^*(\mathbb{R}^n \times \mathbb{R}) \longrightarrow \mathcal{N}^{*-1}(\mathbb{R}^n \times \mathbb{R})$$

K:
$$\mathcal{L}^{2}(\mathbb{R}^{n} \times \mathbb{R}) \to \mathcal{L}^{2-1}(\mathbb{R}^{n} \times \mathbb{R})$$

Main idea: remove "t". $W \in \mathcal{L}^{2}(\mathbb{R}^{n} \times \mathbb{R})$
 (I) there is no dt: $\exists \phi \in \mathcal{L}^{2}(\mathbb{R}^{n})$
 $W = (\mathcal{T}^{*}\phi) f(x,t)$
 $W = (\mathcal{T}^{*}\phi) \wedge f(x,t)dt$
 $W = (\mathcal{T}^{*}\phi) \wedge f(x,t)dt$

Goal: Check such k really satisfies
$$-\pi^* \circ s^* = \pm (dk \pm kd)$$

We only check (I).

(I) Suppose
$$W = (\pi^* \phi) \cdot f(x,t) \in \mathcal{L}^q(\mathbb{R}^n \times \mathbb{R})$$
 $\pi^* s^* W = \pi^* \left(\underbrace{S^*(\pi^* \phi) \cdot S^* f} \right)$

$$= \pi^* \left(\phi \cdot (f \circ s) \right) = (\pi^* \phi) \cdot \left(f \circ s \circ \pi \right)$$

$$= \pi^* \phi \cdot f(x, \sigma)$$

$$\Rightarrow \left(- \pi^* s^* \right) W = \pi^* \phi \cdot \left(f(x, \tau) - f(x, \sigma) \right)$$

Thm
$$H^*(\mathbb{R}^n) \cong H^*(\mathbb{R}^{n-1}) \cong \dots \cong H^*(\mathbb{P}^t)$$

PRUT: By induction. $H^*(\mathbb{R}^m) \xrightarrow{\pi^{\#}} H^*(\mathbb{R}^n)$

Corollary: using the same observation:

 $M \times \mathbb{R}^1 \qquad H^*(M \times \mathbb{R}^1)$
 $\pi \downarrow \uparrow s \qquad \pi^{\#} \downarrow s^{\#}$
 $S(x) = (x, u) \qquad H^*(M)$

PROT: locally use K operator.

Corollary Homotopic maps induce the same map

in cohomology.

Recall
$$f \stackrel{\xi}{=} g : M \rightarrow N$$
. i.e. $F : M \times R^1 \rightarrow N$

$$\begin{cases} F(x,t) = f(x) & t \ge 1 \\ F(x,t) = g(x) & t \ge 0 \end{cases}$$

$$\Rightarrow f = F \circ S, \quad g = F \circ S$$

$$\Rightarrow f = F \circ S, \quad g = F \circ S$$

$$\Rightarrow f = S^{\#} \circ F^{\#} = (\pi^{\#})^{-1} \circ F^{\#} = S^{\#} \circ F^{\#}$$

The case for compact cohomology is similar.
$$H_c^{*+1}(\mathbb{R}^{n+1}) \succeq H_c^{*}(\mathbb{R}^{n})$$

$$H_c^{*+1}(M \times \mathbb{R}) \succeq H_c^{*}(M)$$

Exercise 4.8. compute H*(M). H*(M). Mis open Möbius strip.

Mayer-Vietoris Argument

Motivation: The way we calculate H*(S")

Main Tools

- Geometric tools: induction on the cardinality of an special open cover
 —the good cover;
- Algebraic tools: Five Lemma

Given a commutative diagram of Abealian grps

$$A \xrightarrow{f_1} B \xrightarrow{f_2} C \xrightarrow{f_3} D \xrightarrow{f_4} E \xrightarrow{\cdots}$$

$$A \xrightarrow{f_1} B \xrightarrow{f_2} C \xrightarrow{f_3} D \xrightarrow{f_4} E \xrightarrow{\cdots}$$

$$A \xrightarrow{f_1} B \xrightarrow{f_2} C \xrightarrow{f_3} D \xrightarrow{f_4} E \xrightarrow{\cdots}$$
then r is also a isomorphism

Main Resluts

- the finite dimensionality of de Rham cohomology;
- Poincaré duality;
- the Künneth formula compute the cohomology of product space;
- the Leray-Hirsch theorem compute the cohomology of fiber bundle.

Existence of a Good Cover

Definition (good cover)

Let M be a n manifold, an open cover $\mathcal{U} = \{U_{\alpha}\}$ of M is called a **good cover** if all nonempty finite intersections $U_{\alpha_0} \cap \cdots \cup U_{\alpha_p}$ are diffeomorphic to \mathbb{R}^n . A manifold which has a finite good cover is said to be of **finite type**.

Proof of exisetnce of a good cover

Proof.

Some basic knowledge from Riemannian geometry may be helpful:

- Every manifold can be given a Riemannian structure, and Levi-Civta connection, thus we can define geodesic;
- If U and V are g.c., then $U \cap V$ is a g.c.n;
- The geodecically convex nbhd can be choosen sufficiently small s.t. it lies in the coordinate nbhd, then diffeomorphic to \mathbb{R}^n .

Application I: Finite Dimensionality

the finite dimensionality of de Rham cohomology

M= R"

Theorem

If M has a finite good cover, then we have each $q \in \mathbb{N}$,

$$\dim_{\mathbb{R}} H^q(M) < \infty.$$

The most important observation: by MV sequence

UUV=M

$$\cdots \to H^{q} \underbrace{(U \cap V)}_{\stackrel{\longrightarrow}{\longrightarrow}} \underbrace{H^{q}(U \cup V)}_{\stackrel{\longrightarrow}{\longrightarrow}} H^{q}(U) \oplus H^{q}(V) \to \cdots,$$

We get

$$H^q(U \cup V) \cong \ker r \oplus \operatorname{im} r = \underline{\operatorname{lim} d^* \oplus \operatorname{im} r}.$$

the finite dimensionality of de Rham cohomology

Proof.

Induction: the number of covers in the good cover

If M is already diffeomorphic to \mathbb{R}^n , then it follows from Poincaré lemma.

 $d_{\text{im}_{\text{IR}}} (-1^{8}(u)) \subset \infty$

Now for $p \to p+1$:

Suppose good cover is $\{U_0,\cdots,U_p\}$, consider $U=U_0\cup\cdots\cup U_{p-1}$ and $V=U_p$ it follows from the observation above.

Remark. It is also true for compact cohomology.

Application II: Poincaré Duality

Some observations

Ha(184) 18 0 ---

For $\forall n \in \mathbb{N}$:

$$\underline{H^q(\mathbb{R}^n)} = \begin{cases} \mathbb{R} & \text{if } \underline{q=0} \\ 0 & \text{if } \underline{q \geq 1} \end{cases}, \quad \underline{H^q_c(\mathbb{R}^n)} = \begin{cases} \mathbb{R} & \text{if } \underline{q=n} \\ 0 & \text{if } \underline{q \neq n} \end{cases}$$

For sphere S^n :

$$\underbrace{H^q(S^n)} = \underbrace{H^q_c(S^n)} = \begin{cases} \mathbb{R} & \text{if } q = 0, n \\ 0 & \text{else} \end{cases}.$$

Basic Algebraic knowledge

A pairing between V.W. dimpv, dimpwc 00 $\langle , \rangle : V \otimes W \rightarrow \mathbb{R}$ $\langle V, u \rangle \in \mathbb{R}$ is said to be non degenerate it <v.w>=0. (+w ∈W) ⇒ V =0 i-e the map U -> < V. > EW* is injective. Thm $d_{im_{\mathbb{R}}V}, d_{im_{\mathbb{R}}W} < \infty$. <, > is nondegenerate iff the map VI > < V. > is an isomorphism i.e. V =w*

Basic Algebraic knowledge

Poincaré duality

Theorem,

Suppose M is oriented n manifold, there is a pairing

$$\int : H^q(M) \otimes H^{n-q}_c(M) \to \mathbb{R}, \quad [\underline{\sigma}] \otimes [\underline{\tau}] \mapsto \int_M \underline{\sigma \wedge \tau},$$

If M has a finite good cover, then the pairing is nondegenerate, i.e.

Check!: Is the pairing well defined?

12 h

How to prove?

Similar to the previous application, we hope the theorem can be proved by induction more precisely, if the thm holds for U,V and $U\cap V$, then it holds for $U\cup V$.

From MV seq , we have (note the different direction)

Main obstruction: $H^{9}(u) H^{-9}(u)$ O how to define the map $H^{9}(u) \rightarrow H^{-9}(u)^{*}$?

induce from $\int \sigma \wedge \tau$

Now to Show the commutative?

Recall:
$$d*w|_{u} = -d(P_{v}w)$$
. $d*w|_{v} = d(P_{u}w)$

$$d*t = d(f_{i}t) = d(f_{i}t)$$

The last is direct calculation.

How to prove?

Proof.

Induction: the number of covers in the good cover If M is already diffeomorphic to \mathbb{R}^n , then it follows from Poincaré lemma.

Now for $p \to p + 1$:

Suppose good cover is $\{U_0, \cdots, U_p\}$, consider $U = U_0 \cup \cdots \cup U_{p-1}$ and $V = U_p$, it follows from the observation above.

degree of map

Corollary

If M is a connected oriented manifold of dimension n, then $(H^n_c(M))^*\cong H^0(\overline{M})=\mathbb{R}$, then $H^n_c(M)\cong\mathbb{R}$, if M is also compact, then $H^n(M) = \mathbb{R}$.

If M,N compact, connected, oriented, $f:M\to N$, $f^*:H^n(N)\to$ $H^n(M)$, then the degree of f is

where
$$H^n(N) = /[\omega]$$
 $Q \in \mathcal{A}$

where $H^n(N) = \langle [\omega] \rangle$.

Application III: Künneth formula and Leray-Hirsch Theorem

Künneth formula

Künneth formula mainly tells us how to compute the cohomology of the product of two manifolds M and F, i.e.

$$\underline{H^*(M\times F)} = \underbrace{H^*(M)} \otimes \underbrace{H^*(F)},$$

More precisely

$$H^n(\underbrace{M} \times F) = \bigoplus_{p+q=n} \underbrace{H^p(M)} \otimes \underbrace{H^q(F)}.$$

To have a better understanding of MV argument this powerful tool, we will assume only M is finite type.

Construct the isomorphiam ψ

The two natural projections

give rise to a map on forms

$$\underbrace{\omega \otimes \phi}_{} \mapsto \underbrace{\pi^* \omega}_{} \underbrace{\partial \underbrace{\rho^* \phi}_{}}, \quad \omega \in H^p(M), \phi \in H^q(F),$$

which induces a map in cohomology

$$\underbrace{\psi} \underbrace{H^*(M \times F) = H^*(M) \otimes H^*(F),}_{}$$

we will show that ψ is an isomorphism.(Five lemma !)

Using MV argument to prove

Main idea is also :induction + MV sequence, so if $M = \mathbb{R}^n$, it follows from Poincaré lemma.

Now consider MV seq below:

$$\cdots \to H^p(U \cup V) \to H^p(U) \oplus H^p(V) \to H^p(U \cap V) \to \cdots,$$

- 1 tensoring $H^{n-p}(F)$, still exact;
- **2** summing over all integers p.

we get an exact sequence by tensoring with $H^{n-p}(F)$

$$\cdots \to H^{p}(U \cup V) \otimes H^{n-p}(F) \to (H^{p}(U) \otimes H^{n-p}(F)) \oplus (H^{p}(V) \otimes H^{n-p}(F))$$
$$\to H^{p}(U \cap V) \otimes H^{n-p}(F) \to \cdots$$

since tensoring with a vector space preserves exactness. Summing over all integers p yields the exact sequence

$$\cdots \to \bigoplus_{p=0}^{n} H^{p}(U \cup V) \otimes H^{n-p}(F)$$

$$\to \bigoplus_{p=0}^{n} (H^{p}(U) \otimes H^{n-p}(F)) \oplus (H^{p}(V) \otimes H^{n-p}(F))$$

$$\to \bigoplus_{p=0}^{n} H^{p}(U \cap V) \otimes H^{n-p}(F) \to \cdots$$

The following diagram is commutative

Leray-Hirsch Theorem

Let $\pi:E\to M$ be a fiber bundle with fiber F, suppose there are cohomology classes e_1,\cdots,e_r on E which restrict to a basis of the cohomology of each fiber. Then we can define a map

$$\psi: H^*(M) \otimes \mathbb{R}\{e_1, \cdots, e_r\} \to H^*(E).$$

The same argument as the Künneth formula gives

Theorem

Let E be a fiber bundle over M with fiber F, M is finite type, if there are cohomology classes e_1, \cdots, e_r on E which restrict to a basis of the cohomology of each fiber, then

$$H^*(E) \cong H^*(M) \otimes \mathbb{R}\{e_1, \cdots, e_r\} \cong H^*(M) \otimes H^*(F).$$

The End