2023 Fall Partial Differential Equations Midterm Task: Properties of Harmonic Functions

2021 Chern Class 2113696 Kai Zhu

October 29, 2023

Contents

1	Problem 9.1	1
2	Problem 9.2	1
3	Problem 9.3	2
4	Problem 9.4	3
5	Problem 9.5	3

1 Problem 9.1

Problem. Suppose that $u, \phi \in C^2(\Omega; \mathbb{R}) \cap C^0(\overline{\Omega})$ on a bounded domain $\Omega \subset \mathbb{R}^n$. Assume that u subharmonic and ϕ harmonic, with matching boundary values:

 $u|_{\partial\Omega} = \phi|_{\partial\Omega}.$

 $u \leq \phi$

 $Show \ that$

at all points of Ω .

Proof. Let $v = u - \phi \in C^2(\Omega; \mathbb{R}) \cap C^0(\overline{\Omega})$, then we have

$$-\Delta v = -\Delta u + \Delta \phi = -\Delta u \le 0.$$

Hence v is subharmonic, and

 $v|_{\partial\Omega} = u|_{\partial\Omega} - \phi|_{\partial\Omega} = 0.$

Then from maximum principle, we have

 $v \leq 0$

at all points of Ω . We can now conclude that $u \leq \phi$ at all points of Ω .

2 Problem 9.2

Problem. Liouville's theorem says that a bounded harmonic function on \mathbb{R}^n is constant. To show this, assume $u \in C^2(\mathbb{R}^n)$ is harmonic and satisfies

 $|u(\boldsymbol{x})| \le M$

for all $x \in \mathbb{R}^n$.

Proof. For arbitrary $\boldsymbol{x}_0 \in \mathbb{R}^n$, set $r_0 = |\boldsymbol{x}_0|$. From mean value theorem, we have

$$u(0) = \frac{1}{\operatorname{Vol}[B(0,R)]} \int_{B(0,R)} u(\boldsymbol{x}) d\boldsymbol{x},$$
$$u(\boldsymbol{x_0}) = \frac{1}{\operatorname{Vol}[B(\boldsymbol{x_0},R)]} \int_{B(\boldsymbol{x_0},R)} u(\boldsymbol{x}) d\boldsymbol{x}.$$

Hence we have

$$u(0) - u(\boldsymbol{x}_0) = \frac{n}{A_n R^n} \left[\int_{B(0,R)} u(\boldsymbol{x}) d\boldsymbol{x} - \int_{B(\boldsymbol{x}_0,R)} u(\boldsymbol{x}) d\boldsymbol{x} \right].$$

Let $U = B(0, R) \setminus B(\boldsymbol{x}_0, R)$ and $V = B(\boldsymbol{x}_0, R) \setminus B(0, R)$. Since the two domians are symmetric, we have Vol(U) = Vol(V). Note that $B(0, R) \setminus B(\boldsymbol{x}_0, R) \subset B(0, R) \setminus B\left(\frac{\boldsymbol{x}_0}{2}, R - \frac{r_0}{2}\right)$, then we have

$$\begin{aligned} |u(0) - u(\boldsymbol{x}_0)| &\leq \frac{n}{A_n R^n} \left[\int_U u(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} + \int_V u(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \right], \\ &\leq \frac{n}{A_n R^n} \cdot M \cdot (\operatorname{Vol}(U) + \operatorname{Vol}(V)) \\ &= \frac{2nM}{A_n R^n} \cdot \operatorname{Vol}(U) \\ &\leq \frac{2nM}{A_n R^n} \cdot \operatorname{Vol}\left(B\left(\frac{\boldsymbol{x}_0}{2}, R - \frac{r_0}{2}\right) \right) \\ &\leq 2M \left[\frac{R^n - (R - \frac{r_0}{2})^n}{R^n} \right]. \end{aligned}$$

Take $R \to \infty$, then we have $u(\boldsymbol{x}_0) = u(0)$. Hence u is constant.

3 Problem 9.3

Problem. Suppose that $\Omega \subset \mathbb{R}^n$ is bounded, with $\Omega \subset B(0, R)$, and assume that $u \in C^2(\Omega; \mathbb{R}) \cap C^0(\overline{\Omega})$ satisfies

$$-\Delta u = f, \quad u|_{\partial\Omega} = 0$$

and $f \in C^0(\overline{\Omega})$. Show that there exists a constant C depends only on R such that

$$\max_{\overline{\Omega}} |u| \leq C \max_{\overline{\Omega}} |f|$$

Proof. Let $M = \max_{\overline{\Omega}} |f|$, and $c = \frac{M}{2n}$. Consider $g(\boldsymbol{x}) = u(\boldsymbol{x}) + c|\boldsymbol{x}|^2$, thus

$$-\Delta g = -\Delta u - 2nc = f - M \le 0.$$

Hence g is subharmoinc. Note that for any $\boldsymbol{x} \in \partial \Omega$, we have

$$|g(\boldsymbol{x})| = c|\boldsymbol{x}|^2 \le cR^2.$$

Thus $\max_{\partial \Omega} |g| \leq cR^2$, then from maximum principle,

$$\max_{\overline{\Omega}} |g| \le \max_{\partial \Omega} |g| \le cR^2.$$

Note that $|u(\boldsymbol{x})| \leq |g(\boldsymbol{x})| + cR^2$, then we have

$$\max_{\overline{\Omega}} |u| \le \max_{\overline{\Omega}} |g| + cR^2 \le 2cR^2 = \frac{R^2}{n} \cdot \max_{\overline{\Omega}} |f|.$$

Hence we choose $C = \frac{R^2}{n}$ then complete the proof.

4 Problem 9.4

Problem. Suppose u is a harmonic function on a domain that includes B(0, 4R) for some R > 0, and assume $u \ge 0$. Show that

$$\max_{B(0,R)} u \le 3^n \min_{B(0,R)} u$$

Proof. Assume $u(\boldsymbol{x}^*) = \max_{B(0,R)} u, u(\boldsymbol{x}_*) = \min_{B(0,R)} u$. From mean value theorem, we have

$$u(\boldsymbol{x}^*) = \frac{1}{\operatorname{Vol}[B(\boldsymbol{x}^*, R)]} \int_{B(\boldsymbol{x}^*, R)} u(\boldsymbol{x}) \mathrm{d}\boldsymbol{x},$$
$$u(\boldsymbol{x}_*) = \frac{1}{\operatorname{Vol}[B(\boldsymbol{x}_*, 3R)]} \int_{B(\boldsymbol{x}_*, 3R)} u(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}.$$

From the figure below, we can easily have $B(\boldsymbol{x}^*, R) \subset B(0, 2R) \subset B(\boldsymbol{x}_*, 3R)$.

Figure 1: $B(\boldsymbol{x}^*, R) \subset B(0, 2R) \subset B(\boldsymbol{x}_*, 3R)$

Hence we have

$$\begin{split} u(\boldsymbol{x}_*) &= \frac{n}{A_n(3R)^n} \int_{B(\boldsymbol{x}_*,3R)} u(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \\ &\geq \frac{n}{A_n(3R)^n} \int_{B(\boldsymbol{x}^*,R)} u(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \\ &= \frac{n}{A_n(3R)^n} \cdot \frac{A_n R^n}{n} \cdot u(\boldsymbol{x}^*). \end{split}$$

Thus $u(\boldsymbol{x}^*) \leq 3^n u(\boldsymbol{x}_*)$, then we know that $\max_{B(0,R)} u \leq 3^n \min_{B(0,R)} u$.

5 Problem 9.5

Problem. Suppose $u \in C^2(B, \mathbb{R}) \cap C^0(\overline{B})$ is a nonconstant subharmonic function and assume that the maximum of u on \overline{B} is attained at the point $\mathbf{x}_0 \in \partial B$. Prove Hopf's lemma, i.e.,

$$\frac{\partial u}{\partial r}(\boldsymbol{x}_0) > 0.$$

Proof. To show this, let $B := B(0, R) \subset \mathbb{R}^n$ for some R > 0, and set

$$A := \left\{ \frac{R}{2} < |\boldsymbol{x}| < R \right\}.$$

Consider the function

$$h(\boldsymbol{x}) := e^{-2n|\boldsymbol{x}|^2/R^2} - e^{-2n}.$$

Then we have

$$\frac{\partial h}{\partial x_j}(\boldsymbol{x}) = e^{-2n|\boldsymbol{x}|^2/R^2} \cdot \frac{-2n}{R^2} \cdot 2x_j,$$
$$\frac{\partial^2 h}{\partial x_j^2}(\boldsymbol{x}) = e^{-2n|\boldsymbol{x}|^2/R^2} \left(\frac{16n^2x_j^2}{R^4} - \frac{4n}{R^2}\right).$$

Hence we have

$$-\Delta h = -e^{-2n|\boldsymbol{x}|^2/R^2} \left(\frac{16n^2|\boldsymbol{x}|^2}{R^4} - \frac{4n^2}{R^2}\right) \le 0$$

for any $\boldsymbol{x} \in A$. Now set $m = \max_{\{r=\frac{R}{2}\}} u$ and $M = \max_{\{r=R\}} u$. If $m \ge M$, then there exists $|\boldsymbol{x}_0^*| = \frac{R}{2}$ such that $u(\boldsymbol{x}_0^*) = \max_{\overline{B}} u$. Since $\boldsymbol{x}_0^* \in B$, we can attain a contracdiction from strong manimum principle. Thus m < M. Hence we can choose $0 < \varepsilon < \frac{M-m}{2(e^{-n/2}-e^{-2n})}$. Consider

 $u_{\varepsilon} := u + \varepsilon h.$

Then we have

$$|u_{\varepsilon}|_{\partial B} = u|_{\partial B} \leq M$$

and

$$u_{\varepsilon}|_{\partial B(0,R/2)} = u|_{\partial B(0,R/2)} + \varepsilon h|_{\partial B(0,R/2)}$$

$$\leq m + \varepsilon \cdot (e^{-n/2} - e^{-2n}) < M$$

. .

Thus we have

$$\max_{\partial A} u_{\varepsilon} \le M.$$

Since $-\Delta u_{\varepsilon} = -\Delta u - \varepsilon \Delta h \leq 0$ on A, from maximum principle, we have

$$\max_{\overline{A}} u_{\varepsilon} = \max_{\partial A} u_{\varepsilon} \le M.$$

Thus we have

$$\frac{\partial u_{\varepsilon}}{\partial r}(\boldsymbol{x}_{0}) = \lim_{h \to 0^{+}} \frac{u_{\varepsilon}(\boldsymbol{x}_{0}) - u_{\varepsilon}(\boldsymbol{x}_{0} - hr)}{h} = \lim_{h \to 0^{+}} \frac{M - u_{\varepsilon}(\boldsymbol{x}_{0} - hr)}{h} \ge 0$$

Note that

$$\frac{\partial h}{\partial r}(\boldsymbol{x}_0) = \nabla h(\boldsymbol{x}_0) \cdot \boldsymbol{x}_0 = -4n\mathrm{e}^{-2n},$$

then we have

$$\frac{\partial u}{\partial r}(\boldsymbol{x}_0) = \frac{\partial u_{\varepsilon}}{\partial r}(\boldsymbol{x}_0) - \varepsilon \frac{\partial h}{\partial r}(\boldsymbol{x}_0) \ge 4n\varepsilon \mathrm{e}^{-2n} > 0$$

Finally we complete the proof.

References

[1] D. Borthwick, Introduction to partial differential equations. Springer, 2017.