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1 Problem 9.1
Problem. Suppose that u, ϕ ∈ C2(Ω;R) ∩C0(Ω) on a bounded domain Ω ⊂ Rn. Assume that u subharmonic and ϕ
harmonic, with matching boundary values:

u|∂Ω = ϕ|∂Ω.

Show that
u ≤ ϕ

at all points of Ω.

Proof. Let v = u− ϕ ∈ C2(Ω;R) ∩ C0(Ω), then we have

−∆v = −∆u+∆ϕ = −∆u ≤ 0.

Hence v is subharmonic, and
v|∂Ω = u|∂Ω − ϕ|∂Ω = 0.

Then from maximum principle, we have
v ≤ 0

at all points of Ω. We can now conclude that u ≤ ϕ at all points of Ω.

2 Problem 9.2
Problem. Liouville’s theorem says that a bounded harmonic function on Rn is constant. To show this, assume
u ∈ C2(Rn) is harmonic and satisfies

|u(x)| ≤ M

for all x ∈ Rn.
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Proof. For arbitrary x0 ∈ Rn, set r0 = |x0|. From mean value theorem, we have

u(0) =
1

Vol[B(0, R)]

∫
B(0,R)

u(x)dx,

u(x0) =
1

Vol[B(x0, R)]

∫
B(x0,R)

u(x)dx.

Hence we have

u(0)− u(x0) =
n

AnRn

[∫
B(0,R)

u(x)dx−
∫
B(x0,R)

u(x)dx

]
.

Let U = B(0, R) \ B(x0, R) and V = B(x0, R) \ B(0, R). Since the two domians are symmetric, we have Vol(U) =
Vol(V ). Note that B(0, R) \B(x0, R) ⊂ B(0, R) \B

(
x0

2 , R− r0
2

)
, then we have

|u(0)− u(x0)| ≤
n

AnRn

[∫
U

u(x)dx+

∫
V

u(x)dx

]
,

≤ n

AnRn
·M · (Vol(U) + Vol(V ))

=
2nM

AnRn
·Vol(U)

≤ 2nM

AnRn
·Vol

(
B
(x0

2
, R− r0

2

))
≤ 2M

[
Rn − (R− r0

2 )
n

Rn

]
.

Take R → ∞, then we have u(x0) = u(0). Hence u is constant.

3 Problem 9.3
Problem. Suppose that Ω ⊂ Rn is bounded, with Ω ⊂ B(0, R), and assume that u ∈ C2(Ω;R) ∩ C0(Ω) satisfies

−∆u = f, u|∂Ω = 0

and f ∈ C0(Ω).Show that there exists a constant C depends only on R such that

max
Ω

|u| ≤ Cmax
Ω

|f |.

Proof. Let M = maxΩ |f |, and c = M
2n . Consider g(x) = u(x) + c|x|2, thus

−∆g = −∆u− 2nc = f −M ≤ 0.

Hence g is subharmoinc. Note that for any x ∈ ∂Ω, we have

|g(x)| = c|x|2 ≤ cR2.

Thus max∂Ω |g| ≤ cR2, then from maximum principle,

max
Ω

|g| ≤ max
∂Ω

|g| ≤ cR2.

Note that |u(x)| ≤ |g(x)|+ cR2, then we have

max
Ω

|u| ≤ max
Ω

|g|+ cR2 ≤ 2cR2 =
R2

n
·max

Ω
|f |.

Hence we choose C = R2

n then complete the proof.
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4 Problem 9.4
Problem. Suppose u is a harmonic function on a domain that includes B(0, 4R) for some R > 0, and assume u ≥ 0.
Show that

max
B(0,R)

u ≤ 3n min
B(0,R)

u.

Proof. Asuume u(x∗) = maxB(0,R) u, u(x∗) = minB(0,R) u. From mean value theorem, we have

u(x∗) =
1

Vol[B(x∗, R)]

∫
B(x∗,R)

u(x)dx,

u(x∗) =
1

Vol[B(x∗, 3R)]

∫
B(x∗,3R)

u(x)dx.

From the figure below, we can easily have B(x∗, R) ⊂ B(0, 2R) ⊂ B(x∗, 3R).

x∗

x∗

B (x∗, R)

B(0, 2R)

B(x∗, 3R)

Figure 1: B(x∗, R) ⊂ B(0, 2R) ⊂ B(x∗, 3R)

Hence we have

u(x∗) =
n

An(3R)n

∫
B(x∗,3R)

u(x)dx

≥ n

An(3R)n

∫
B(x∗,R)

u(x)dx

=
n

An(3R)n
· AnR

n

n
· u(x∗).

Thus u(x∗) ≤ 3nu(x∗), then we know that maxB(0,R) u ≤ 3n minB(0,R) u.

5 Problem 9.5
Problem. Suppose u ∈ C2(B,R)∩C0(B) is a nonconstant subharmonic function and assume that the maximum of
u on B is attained at the point x0 ∈ ∂B. Prove Hopf’s lemma, i.e.,

∂u

∂r
(x0) > 0.

Proof. To show this, let B := B(0, R) ⊂ Rn for some R > 0, and set

A :=

{
R

2
< |x| < R

}
.

Consider the function
h(x) := e−2n|x|2/R2

− e−2n.
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Then we have

∂h

∂xj
(x) = e−2n|x|2/R2

· −2n

R2
· 2xj ,

∂2h

∂x2
j

(x) = e−2n|x|2/R2

(
16n2x2

j

R4
− 4n

R2

)
.

Hence we have
−∆h = −e−2n|x|2/R2

(
16n2|x|2

R4
− 4n2

R2

)
≤ 0

for any x ∈ A. Now set m = max{r=R
2 } u and M = max{r=R} u. If m ≥ M , then there exists |x∗

0| = R
2 such that

u(x∗
0) = maxB u. Since x∗

0 ∈ B, we can attain a contracdiction from strong manimum principle. Thus m < M .
Hence we can choose 0 < ε < M−m

2(e−n/2−e−2n)
. Consider

uε := u+ εh.

Then we have
uε|∂B = u|∂B ≤ M

and

uε|∂B(0,R/2) = u|∂B(0,R/2) + εh|∂B(0,R/2)

≤ m+ ε · (e−n/2 − e−2n) < M.

Thus we have
max
∂A

uε ≤ M.

Since −∆uε = −∆u− ε∆h ≤ 0 on A, from maximum principle, we have

max
A

uε = max
∂A

uε ≤ M.

Thus we have
∂uε

∂r
(x0) = lim

h→0+

uε(x0)− uε(x0 − hr)

h
= lim

h→0+

M − uε(x0 − hr)

h
≥ 0.

Note that
∂h

∂r
(x0) = ∇h(x0) · x0 = −4ne−2n,

then we have
∂u

∂r
(x0) =

∂uε

∂r
(x0)− ε

∂h

∂r
(x0) ≥ 4nεe−2n > 0.

Finally we complete the proof.
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