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Abstract

These homeworks are from the course website, the course is taught by Prof. Zuoqing Wang.
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1 Problem Set 1, Part 1: Smooth Manifolds
Problem 1.1 (Topological Group). A topological group is a topological space G which is also a group, so that the
multiplication operation

µ : G×G→ G, (g1, g2) 7→ g1g2

and the inverse operation
i : G→ G, g 7→ g−1

are both continuous. For any subsets S and T in G we can define

ST = {g1g2|g1 ∈ S, g2 ∈ T}

By this way we can define the subsets Sn = S × · · · × S and S−1.

1. If G is a topological group, and U is any open neighborhood of the identity element e ∈ G. Prove: There exists
an open neighborhood V of e so that V = V −1 and V 2 ⊂ U .

2. Prove: If G is a connected topological group, then for any open neighborhood U of the identity element e ∈ G,
we have

G =

∞⋃
n=1

Un.

3. Suppose G is compact Hausdorff topological group and g ∈ G Prove: e ∈ {gn|n ∈ Z∗}.

Proof. (1) Note that i is a homeomorphism, and V −1 = i(V ), thus for each open subset V , we have V −1 is open, so
V ∩ V −1 is open, then for any U is an open neighborhood of e, then we have U ∩U−1 is an open neighborhood of e,
and (U ∩ U−1)−1 = U ∩ U−1.

Note that V 2 = µ(V × V ), thus since µ is continuous, and e · e = e, thus for the open neighborhood U of e, then
we can always find a neighborhood of (e, e) in G×G, more precisely, we can choose V ×V such that V ×V ⊂ µ−1(U),
i.e., we have V 2 ⊂ U , then from A ⊂ B then A2 ⊂ B2, we can choose V ∩ V −1 as desired.

(2) Firstly we claim an important fact: open subgroup of topological group is always closed. Suppose V is an
open subgroup of G, then we have for any g ∈ G, gV is open, then we have

V = G \
⋃
g ̸=e

gV
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is closed. Now consider V ⊆ U and V = V −1, then we have

H =

∞⋃
n=1

V n

is natural a subgroup of G, note that V 2 = ∪g∈V gV is open, so we can prove V n is open for all n by induction, then
we konw that H is an open subgroup of G, then it is closed, since G is connected, then we know that H = G, since
H ⊆ ∪Un ⊆ G, then we finish the proof.

(3)

Problem 1.2 (Locally Euclidean). Prove the following properties of locally Euclidean spaces:

1. Any connected component of a locally Euclidean space is open.

2. Any connected locally Euclidean space is path connected.

3. Any locally Euclidean Hausdorff space is regular. Thus as a consequence of Urysohn’s metrization theorem, any
topological manifold is metrizable.

4. If both X, Y are connected, second countable and locally Euclidean, and f : X → Y is bijective and continuous,
then f is a homeomorphism.

Proof. (1) Recall a basic fact: if A and B are connected and A∩B 6= ∅ then A∪B is connected, thus for a connected
component C of X, and any x ∈ C, since X is locally Euclidean, then there exists a coordinate chart (x, U, φ) of x,
then since U is homeomorphism to Rn through φ, then we know that U is connected, then since x ∈ C ∩U , thus we
have C ∪ U is connected, then we have C ∪ U = C, then U ⊂ C, then we know that C is open.

(2) For any x ∈ X, we define

Px := {y ∈ X|∃γ : I → X, γ(0) = x, γ(1) = y},

then we know that Px = Py or Px ∩ Py = ∅, from the locally Euclidean condition, we know that Px is open for
all x ∈ X, then since

X =
⊔
x∈X

Px,

and from X is connected, we know that Px are all equal, so we know that X is path connected.
(3) Recall regular means we can separate point and closed set with open sets, and locally Euclidean implies that

X is locally compact, thus we will prove locally compact Hausdorff space is T3, then regular. Consider x /∈ F , and F
is closed, then consider compact set K ⊆ X \F , and x ∈ K◦, then K◦ and X \K is as desired, since K is a compact
space in Hausdorff space, then it is closed.

(4) Without proof, we state a strong result in algebraic topology, called invariance of domain proved by
Brouwer:

Theorem 1. If U is an open subset of Rn and f : U → Rn is an injective continuous map, then f(U) and U are
homeomorphism given by f .

then for each x suppose it has coordinate chart (Ux, φx), and for Y we have (Vy, ψy), then for any open set U ,
we have f(U) = f(∪x∈UUx) = ∪x∈Uf(Ux) by shrinking Ux, then since φ−1

x (Ux) is open in Rn and ϕf(x) ◦ f ◦ φ−1
x

is an injective continuous map, so from the theorem above, we have ϕf(x) ◦ f ◦ φ−1
x is open, since φx and ψf(x) are

homeomorphisms, then we know that f is open, so we have f is a homeomorphism.

Remark 2. From (4) we have for any bijective continuous map between topological manifolds, it is naturally a
homeomorphism. For the proof of theorem above, one can refer the lecture notes of Prof. Z.Q. Wang.

Problem 1.3 (Topological manifolds with boundary).

1. Find the definition of topological manifolds with boundary from literature.

2. Prove: If M is a topological n-manifold with boundary, then its boundary, ∂M , is a topological (n − 1)-manifold
without boundary.

3. Prove: the product of two topological manifolds with boundaries is a topological manifold with boundary. What
is its boundary?
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Proof. (1) An n−manifold with a boundary is a second countable Hausdorff space in which any point has
a neighborhood which is homeomorphic either to an open subset of Rn or to an open subset of Hn = {xn ≥
0|(x1, · · · , xn) ∈ Rn} endowed with a Euclidean topology.

(2) We define ∂M := {x ∈ M : there is no (U,φ) of x such that φ(U) ∼= Rn}. Now we recall a basic fact: the
subset of T2(C2) space is still T2(C2). Thus ∂M is T2 and C2.

We will show that ∂M is locally homeomorphic to Rn−1. If x ∈ ∂M , then there exists (U,φ) of x such that
φ(U) ∼= Hn. More precisely, φ(x) ∈ ∂Hn. Now we choose U ′ = φ−1(φ(U) ∩ ∂Hn). Since U ′ = U ∩ ∂M , we know U ′

is open in ∂M . Hence (U ′, φ|U ′) is a chart of x ∈ ∂M . And φ(U ′) is homeomorphic to an open set of ∂Hn = Rn−1.
In summary, we have proved that ∂M is a topological (n-1)-manifold without boundary.
(3) Topologically, we have ∂(M ×N) = ∂(M)×N ∪M × ∂N . But I am confused with the topological boundary

and manifold boundary.

Problem 1.4 (Connected topological manifolds are homogeneous). Let M be a connected topological manifold. Prove:
for any p, q ∈M , there exists a homeomorphism φ :M →M so that φ(p) = q.
Proof. We will prove in three steps:
Step 1: Rn is homogeneous, for any p, q ∈ Rn, we have φ(x) := x+ q− p is a natural homeomorphism, and sends p
to q.
Step 2: Open n-ball Dn is homogeneous, naturally, we have a homeomorphism f : Rn → Dn, which is given by

f(x) =
x√

1 + |x|2
,

and the inverse map is given by
g(y) =

y√
1− |y|2

.

Thus for any p, q ∈ Dn, we can construct the homeomorphism ψ as

ψ(y) =

(
y√

1− |y|2
− p√

1− |p|2
+

q√
1− |q|2

)/√√√√1 +

∣∣∣∣∣ y√
1− |y|2

− p√
1− |p|2

+
q√

1− |q|2

∣∣∣∣∣
2

.

Since ψ(p) = q, and for y0 ∈ ∂Dn, we have ψ(y0) = limy→y0
ψ(y) = y0, thus ψ|∂Dn = id|∂Dn .

Step 3: For a general topological manifold M , we fix a point p. Then there exists (U,φ) such that φ(U) = Dn and
is homeomorphism to U . Then we construct f : M → M such that f |M\U = id|M\U , and f |U = φ−1 ◦ ψ ◦ φ, thus
we have f is a homeomorphism of U and sends p to a choosen point. Since f |Ū is well defined, and f |∂U = id, thus
we have f gives a homeomorphism. Now since M is connected then path connected, consider the path from p to q,
then we will have f1, · · · , fk are homeomorphisms. More precisely, we will have f1(p) = p1, · · · , fk(pk−1) = pk = q,
thus fk ◦ · · · ◦ f1 is the desired homeomorphism.

Finally, we show that any topological manifold is homogeneous.

Problem 1.5 (Local homeomorphism). Let X, Y be topological spaces. A map f : X → Y is called a local
homeomorphism if for every point x ∈ X, there exists an open set U containing x such that the image f(U) is open
in Y , and the restriction f |U : U → f(U) is a homeomorphism (with respect to the respective subspace topologies).

1. Show that every local homeomorphism is an open map (i.e. maps each open set to an open set).

2. Show that if a local homeomorphism is bijective, then it is a homeomorphism.

3. Show that if Y is locally Euclidean and f : X → Y is a local homeomorphism, then X is locally Euclidean.

4. Show that if X is locally Euclidean and f : X → Y is a surjective local homeomorphism, then Y is locally
Euclidean.

Proof. (1) Fixed an open subset U of X. Then for any x ∈ U , we can find a open neighborhood Ux ⊆ U of x, which
is also homeomorphism to f(Ux). Now we have

f(U) = f

(⋃
x∈U

Ux

)
=
⋃
x∈U

f(Ux).

Since f |Ux
is homeomorphism, f |Ux

is open. Hence f(Ux) are open in Y for all x ∈ U . Thus f(U) is open in Y .
(2) From (1), a local homeomorphism ia an open map. Thus f−1 is continuous, which implies that f is homeo-

morphism.
(3)(4) They are directly from definition.
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2 Problem Set 1, Part 2: Smooth Manifolds/Functions/Maps
Problem 2.1 (Construct smooth manifolds by gluing Euclidean open sets). Let M be a smooth manifold with atlas
A = {(φα, Uα, Vα)},

1. Prove: the transition maps φαβ = φβ ◦ φ−1
α satisfy the cocycle conditions:

(a) φβγ ◦ φαβ = φαγ on φα(Uα ∩ Uβ ∩ Uγ);
(b) φαα = IdVα ;
(c) φαβ = (φβα)

−1.

2. Now on the disjoint union M̃ :=
⊔

α Vα we define an equivalence relation via

x ∼ y ⇐⇒ ∃α, β s.t. x ∈ Vα, y ∈ Vβ and y = φαβ(x).

(a) Check: ∼ is an equivalence relation on M̃ .
(b) Prove: the quotient M̃/ ∼ is homeomorphic to M .
(c) Define a natural smooth structure on M̃/ ∼

Proof. (1) This is trivial from definitions of φαβ .
(2)

Problem 2.2 (Orientability of smooth manifolds). Prove: M, N are orientable if and only if M ×N are orientable.

Proof. Recall a smooth manifold M of dimension n is orientable if and only if it has a global non-vanishing n−form.
Suppose M i1→ M × N , N i2→ M × N and M × N

π1→ M , M × N
π2→ N . Hence if (M,ω) and (N, η) are orientable,

then π∗
1ω ∧ π∗

2η is a global non-vanishing top form. And if (M ×N,α) is orientable, then locally at M × {q}, where
i1(p) = (p, q), we consider ωp = α(p,q)(∂y1 |q, · · · , ∂yn |q), then one can easily check ωp is an non-vanishing m-form on
M × {q}. Thus M is orientable, so does N .
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