Solutions to 2023 Differentiable Mnifolds Homework

By KAI Zhu

October 25, 2023

Abstract

These homeworks are from the course website, the course is taught by Prof. Zuoqing Wang.

Contents

1	Problem Set 1, Part 1: Smooth Manifolds	1
2	Problem Set 1, Part 2: Smooth Manifolds/Functions/Maps	4

1 Problem Set 1, Part 1: Smooth Manifolds

Problem 1.1 (Topological Group). A topological group is a topological space G which is also a group, so that the multiplication operation

 $\mu: G \times G \to G, \quad (g_1, g_2) \mapsto g_1 g_2$

and the inverse operation

$$i: G \to G, \quad g \mapsto g^{-1}$$

are both continuous. For any subsets S and T in G we can define

$$ST = \{g_1g_2 | g_1 \in S, g_2 \in T\}$$

By this way we can define the subsets $S^n = S \times \cdots \times S$ and S^{-1} .

- 1. If G is a topological group, and U is any open neighborhood of the identity element $e \in G$. Prove: There exists an open neighborhood V of e so that $V = V^{-1}$ and $V^2 \subset U$.
- 2. Prove: If G is a connected topological group, then for any open neighborhood U of the identity element $e \in G$, we have

$$G = \bigcup_{n=1}^{\infty} U^n.$$

3. Suppose G is compact Hausdorff topological group and $g \in G$ Prove: $e \in \overline{\{g^n | n \in \mathbb{Z}^*\}}$.

Proof. (1) Note that *i* is a homeomorphism, and $V^{-1} = i(V)$, thus for each open subset *V*, we have V^{-1} is open, so $V \cap V^{-1}$ is open, then for any *U* is an open neighborhood of *e*, then we have $U \cap U^{-1}$ is an open neighborhood of *e*, and $(U \cap U^{-1})^{-1} = U \cap U^{-1}$.

Note that $V^2 = \mu(V \times V)$, thus since μ is continuous, and $e \cdot e = e$, thus for the open neighborhood U of e, then we can always find a neighborhood of (e, e) in $G \times G$, more precisely, we can choose $V \times V$ such that $V \times V \subset \mu^{-1}(U)$, i.e., we have $V^2 \subset U$, then from $A \subset B$ then $A^2 \subset B^2$, we can choose $V \cap V^{-1}$ as desired.

(2) Firstly we claim an important fact: open subgroup of topological group is always closed. Suppose V is an open subgroup of G, then we have for any $g \in G$, gV is open, then we have

$$V = G \setminus \bigcup_{g \neq e} gV$$

is closed. Now consider $V \subseteq U$ and $V = V^{-1}$, then we have

$$H = \bigcup_{n=1}^{\infty} V^n$$

is natural a subgroup of G, note that $V^2 = \bigcup_{g \in V} gV$ is open, so we can prove V^n is open for all n by induction, then we konw that H is an open subgroup of G, then it is closed, since G is connected, then we know that H = G, since $H \subseteq \bigcup U^n \subseteq G$, then we finish the proof.

(3)

Problem 1.2 (Locally Euclidean). Prove the following properties of locally Euclidean spaces:

- 1. Any connected component of a locally Euclidean space is open.
- 2. Any connected locally Euclidean space is path connected.
- 3. Any locally Euclidean Hausdorff space is regular. Thus as a consequence of Urysohn's metrization theorem, any topological manifold is metrizable.
- 4. If both X, Y are connected, second countable and locally Euclidean, and $f: X \to Y$ is bijective and continuous, then f is a homeomorphism.

Proof. (1) Recall a basic fact: if A and B are connected and $A \cap B \neq \emptyset$ then $A \cup B$ is connected, thus for a connected component C of X, and any $x \in C$, since X is locally Euclidean, then there exists a coordinate chart (x, U, φ) of x, then since U is homeomorphism to \mathbb{R}^n through φ , then we know that U is connected, then since $x \in C \cap U$, thus we have $C \cup U$ is connected, then we have $C \cup U = C$, then $U \subset C$, then we know that C is open.

(2) For any $x \in X$, we define

$$\mathscr{P}_x := \{ y \in X | \exists \gamma : I \to X, \gamma(0) = x, \gamma(1) = y \},\$$

then we know that $\mathscr{P}_x = \mathscr{P}_y$ or $\mathscr{P}_x \cap \mathscr{P}_y = \varnothing$, from the locally Euclidean condition, we know that \mathscr{P}_x is open for all $x \in X$, then since

$$X = \bigsqcup_{x \in X} \mathscr{P}_x,$$

and from X is connected, we know that \mathscr{P}_x are all equal, so we know that X is path connected.

(3) Recall regular means we can separate point and closed set with open sets, and locally Euclidean implies that X is locally compact, thus we will prove locally compact Hausdorff space is T_3 , then regular. Consider $x \notin F$, and F is closed, then consider compact set $K \subseteq X \setminus F$, and $x \in K^\circ$, then K° and $X \setminus K$ is as desired, since K is a compact space in Hausdorff space, then it is closed.

(4) Without proof, we state a strong result in algebraic topology, called **invariance of domain** proved by Brouwer:

Theorem 1. If U is an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}^n$ is an injective continuous map, then f(U) and U are homeomorphism given by f.

then for each x suppose it has coordinate chart (U_x, φ_x) , and for Y we have (V_y, ψ_y) , then for any open set U, we have $f(U) = f(\bigcup_{x \in U} U_x) = \bigcup_{x \in U} f(U_x)$ by shrinking U_x , then since $\varphi_x^{-1}(U_x)$ is open in \mathbb{R}^n and $\phi_{f(x)} \circ f \circ \varphi_x^{-1}$ is an injective continuous map, so from the theorem above, we have $\phi_{f(x)} \circ f \circ \varphi_x^{-1}$ is open, since φ_x and $\psi_{f(x)}$ are homeomorphisms, then we know that f is open, so we have f is a homeomorphism.

Remark 2. From (4) we have for any bijective continuous map between topological manifolds, it is naturally a homeomorphism. For the proof of theorem above, one can refer the lecture notes of Prof. Z.Q. Wang.

Problem 1.3 (Topological manifolds with boundary).

- 1. Find the definition of topological manifolds with boundary from literature.
- 2. Prove: If M is a topological n-manifold with boundary, then its boundary, ∂M , is a topological (n 1)-manifold without boundary.
- 3. Prove: the product of two topological manifolds with boundaries is a topological manifold with boundary. What is its boundary?

Proof. (1) An *n*-manifold with a boundary is a second countable Hausdorff space in which any point has a neighborhood which is homeomorphic either to an open subset of \mathbb{R}^n or to an open subset of $\mathbb{H}^n = \{x^n \geq 0 | (x^1, \dots, x^n) \in \mathbb{R}^n\}$ endowed with a Euclidean topology.

(2) We define $\partial M := \{x \in M : \text{there is no } (U, \varphi) \text{ of } x \text{ such that } \varphi(U) \cong \mathbb{R}^n \}$. Now we recall a basic fact: the subset of $T_2(C_2)$ space is still $T_2(C_2)$. Thus ∂M is T_2 and C_2 .

We will show that ∂M is locally homeomorphic to \mathbb{R}^{n-1} . If $x \in \partial M$, then there exists (U, φ) of x such that $\varphi(U) \cong \mathbb{H}^n$. More precisely, $\varphi(x) \in \partial \mathbb{H}^n$. Now we choose $U' = \varphi^{-1}(\varphi(U) \cap \partial \mathbb{H}^n)$. Since $U' = U \cap \partial M$, we know U' is open in ∂M . Hence $(U', \varphi|_{U'})$ is a chart of $x \in \partial M$. And $\varphi(U')$ is homeomorphic to an open set of $\partial \mathbb{H}^n = \mathbb{R}^{n-1}$. In summary, we have proved that ∂M is a topological (n-1)-manifold without boundary.

(3) Topologically, we have $\partial(M \times N) = \partial(M) \times N \cup M \times \partial N$. But I am confused with the topological boundary and manifold boundary.

Problem 1.4 (Connected topological manifolds are homogeneous). Let M be a connected topological manifold. Prove: for any $p, q \in M$, there exists a homeomorphism $\varphi : M \to M$ so that $\varphi(p) = q$.

Proof. We will prove in three steps:

Step 1: \mathbb{R}^n is homogeneous, for any $p, q \in \mathbb{R}^n$, we have $\varphi(x) := x + q - p$ is a natural homeomorphism, and sends p to q.

Step 2: Open *n*-ball \mathbb{D}^n is homogeneous, naturally, we have a homeomorphism $f: \mathbb{R}^n \to \mathbb{D}^n$, which is given by

$$f(x) = \frac{x}{\sqrt{1+|x|^2}},$$

and the inverse map is given by

$$g(y) = \frac{y}{\sqrt{1 - |y|^2}}$$

Thus for any $p, q \in \mathbb{D}^n$, we can construct the homeomorphism ψ as

$$\psi(y) = \left(\frac{y}{\sqrt{1-|y|^2}} - \frac{p}{\sqrt{1-|p|^2}} + \frac{q}{\sqrt{1-|q|^2}}\right) \left/ \sqrt{1+\left|\frac{y}{\sqrt{1-|y|^2}} - \frac{p}{\sqrt{1-|p|^2}} + \frac{q}{\sqrt{1-|q|^2}}\right|^2} \right)$$

Since $\psi(p) = q$, and for $y_0 \in \partial \mathbb{D}^n$, we have $\psi(y_0) = \lim_{y \to y_0} \psi(y) = y_0$, thus $\psi|_{\partial \mathbb{D}^n} = \mathrm{id}|_{\partial \mathbb{D}^n}$.

Step 3: For a general topological manifold M, we fix a point p. Then there exists (U, φ) such that $\varphi(U) = \mathbb{D}^n$ and is homeomorphism to U. Then we construct $f: M \to M$ such that $f|_{M\setminus U} = \operatorname{id}|_{M\setminus U}$, and $f|_U = \varphi^{-1} \circ \psi \circ \varphi$, thus we have f is a homeomorphism of U and sends p to a choosen point. Since $f|_{\overline{U}}$ is well defined, and $f|_{\partial U} = \operatorname{id}$, thus we have f gives a homeomorphism. Now since M is connected then path connected, consider the path from p to q, then we will have f_1, \dots, f_k are homeomorphisms. More precisely, we will have $f_1(p) = p_1, \dots, f_k(p_{k-1}) = p_k = q$, thus $f_k \circ \dots \circ f_1$ is the desired homeomorphism.

Finally, we show that any topological manifold is homogeneous.

Problem 1.5 (Local homeomorphism). Let X, Y be topological spaces. A map $f : X \to Y$ is called a local homeomorphism if for every point $x \in X$, there exists an open set U containing x such that the image f(U) is open in Y, and the restriction $f|_U : U \to f(U)$ is a homeomorphism (with respect to the respective subspace topologies).

- 1. Show that every local homeomorphism is an open map (i.e. maps each open set to an open set).
- 2. Show that if a local homeomorphism is bijective, then it is a homeomorphism.
- 3. Show that if Y is locally Euclidean and $f: X \to Y$ is a local homeomorphism, then X is locally Euclidean.
- 4. Show that if X is locally Euclidean and $f: X \to Y$ is a surjective local homeomorphism, then Y is locally Euclidean.

Proof. (1) Fixed an open subset U of X. Then for any $x \in U$, we can find a open neighborhood $U_x \subseteq U$ of x, which is also homeomorphism to $f(U_x)$. Now we have

$$f(U) = f\left(\bigcup_{x \in U} U_x\right) = \bigcup_{x \in U} f(U_x).$$

Since $f|_{U_x}$ is homeomorphism, $f|_{U_x}$ is open. Hence $f(U_x)$ are open in Y for all $x \in U$. Thus f(U) is open in Y.

(2) From (1), a local homeomorphism is an open map. Thus f^{-1} is continuous, which implies that f is homeomorphism.

(3)(4) They are directly from definition.

2 Problem Set 1, Part 2: Smooth Manifolds/Functions/Maps

Problem 2.1 (Construct smooth manifolds by gluing Euclidean open sets). Let M be a smooth manifold with atlas $\mathscr{A} = \{(\varphi_{\alpha}, U_{\alpha}, V_{\alpha})\},\$

- 1. Prove: the transition maps $\varphi_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ satisfy the cocycle conditions:
 - (a) $\varphi_{\beta\gamma} \circ \varphi_{\alpha\beta} = \varphi_{\alpha\gamma} \text{ on } \varphi_{\alpha}(U\alpha \cap U_{\beta} \cap U_{\gamma});$
 - (b) $\varphi_{\alpha\alpha} = \mathrm{Id}_{V_{\alpha}};$
 - (c) $\varphi_{\alpha\beta} = (\varphi_{\beta\alpha})^{-1}$.
- 2. Now on the disjoint union $\widetilde{M} := \bigsqcup_{\alpha} V_{\alpha}$ we define an equivalence relation via

$$x \sim y \iff \exists \alpha, \beta \text{ s.t. } x \in V_{\alpha}, y \in V_{\beta} \text{ and } y = \varphi_{\alpha\beta}(x)$$

- (a) Check: \sim is an equivalence relation on \widetilde{M} .
- (b) Prove: the quotient \widetilde{M}/\sim is homeomorphic to M.
- (c) Define a natural smooth structure on \widetilde{M}/\sim
- *Proof.* (1) This is trivial from definitions of $\varphi_{\alpha\beta}$. (2)

Problem 2.2 (Orientability of smooth manifolds). *Prove:* M, N are orientable if and only if $M \times N$ are orientable.

Proof. Recall a smooth manifold M of dimension n is orientable if and only if it has a global non-vanishing n-form. Suppose $M \xrightarrow{i_1} M \times N$, $N \xrightarrow{i_2} M \times N$ and $M \times N \xrightarrow{\pi_1} M$, $M \times N \xrightarrow{\pi_2} N$. Hence if (M, ω) and (N, η) are orientable, then $\pi_1^* \omega \wedge \pi_2^* \eta$ is a global non-vanishing top form. And if $(M \times N, \alpha)$ is orientable, then locally at $M \times \{q\}$, where $i_1(p) = (p,q)$, we consider $\omega_p = \alpha_{(p,q)}(\partial_{y^1}|_q, \cdots, \partial_{y^n}|_q)$, then one can easily check ω_p is an non-vanishing m-form on $M \times \{q\}$. Thus M is orientable, so does N.

References